000903785 001__ 903785
000903785 005__ 20240705080646.0
000903785 0247_ $$2doi$$a10.3389/fninf.2021.766697
000903785 0247_ $$2Handle$$a2128/30046
000903785 0247_ $$2pmid$$a35069166
000903785 0247_ $$2WOS$$aWOS:000758018300001
000903785 037__ $$aFZJ-2021-05425
000903785 041__ $$aEnglish
000903785 082__ $$a610
000903785 1001_ $$0P:(DE-Juel1)172766$$aHerbers, Patrick$$b0
000903785 245__ $$aConGen a simulator-agnostic visual language for definition and generation of connectivity in large and multiscale neural networks
000903785 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000903785 3367_ $$2DRIVER$$aarticle
000903785 3367_ $$2DataCite$$aOutput Types/Journal article
000903785 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719987945_14554
000903785 3367_ $$2BibTeX$$aARTICLE
000903785 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903785 3367_ $$00$$2EndNote$$aJournal Article
000903785 520__ $$aAn open challenge on the road to unraveling the brain's multilevel organization is establishing techniques to research connectivity and dynamics at different scales in time and space, as well as the links between them. This work focuses on the design of a framework that facilitates the generation of multiscale connectivity in large neural networks using a symbolic visual language capable of representing the model at different structural levels—ConGen. This symbolic language allows researchers to create and visually analyze the generated networks independently of the simulator to be used, since the visual model is translated into a simulator-independent language. The simplicity of the front end visual representation, together with the simulator independence provided by the back end translation, combine into a framework to enhance collaboration among scientists with expertise at different scales of abstraction and from different fields. On the basis of two use cases, we introduce the features and possibilities of our proposed visual language and associated workflow. We demonstrate that ConGen enables the creation, editing, and visualization of multiscale biological neural networks and provides a whole workflow to produce simulation scripts from the visual representation of the model.
000903785 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000903785 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x1
000903785 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
000903785 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000903785 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000903785 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x5
000903785 7001_ $$0P:(DE-HGF)0$$aCalvo, Iago$$b1
000903785 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b2$$eCorresponding author
000903785 7001_ $$0P:(DE-HGF)0$$aRobles Sanchez, Oscar David$$b3
000903785 7001_ $$0P:(DE-HGF)0$$aMata, Susana$$b4
000903785 7001_ $$0P:(DE-HGF)0$$aToharia, Pablo$$b5
000903785 7001_ $$0P:(DE-HGF)0$$aPastor, Luis$$b6
000903785 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b7
000903785 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b8
000903785 7001_ $$0P:(DE-Juel1)168169$$aKlijn, Wouter$$b9$$eCorresponding author
000903785 770__ $$aNeuroscience, Computing, Performance, and Benchmarks: Why It Matters to Neuroscience How Fast We Can Compute
000903785 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2021.766697$$p766697$$tFrontiers in neuroinformatics$$v15$$x1662-5196$$y2022
000903785 8564_ $$uhttps://juser.fz-juelich.de/record/903785/files/ConGen.pdf$$yOpenAccess
000903785 8767_ $$d2022-12-27$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507,50 USD
000903785 909CO $$ooai:juser.fz-juelich.de:903785$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000903785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172766$$aForschungszentrum Jülich$$b0$$kFZJ
000903785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b2$$kFZJ
000903785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich$$b7$$kFZJ
000903785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b8$$kFZJ
000903785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168169$$aForschungszentrum Jülich$$b9$$kFZJ
000903785 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000903785 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000903785 9141_ $$y2022
000903785 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000903785 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000903785 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000903785 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000903785 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000903785 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903785 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903785 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000903785 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000903785 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000903785 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2021$$d2022-11-24
000903785 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-24
000903785 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-24
000903785 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:08:14Z
000903785 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:08:14Z
000903785 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:08:14Z
000903785 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-24
000903785 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-24
000903785 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-24
000903785 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-24
000903785 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-24
000903785 920__ $$lyes
000903785 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000903785 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000903785 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x2
000903785 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x3
000903785 980__ $$ajournal
000903785 980__ $$aVDB
000903785 980__ $$aI:(DE-Juel1)JSC-20090406
000903785 980__ $$aI:(DE-Juel1)INM-6-20090406
000903785 980__ $$aI:(DE-Juel1)IAS-6-20130828
000903785 980__ $$aI:(DE-Juel1)INM-10-20170113
000903785 980__ $$aAPC
000903785 980__ $$aUNRESTRICTED
000903785 9801_ $$aAPC
000903785 9801_ $$aFullTexts
000903785 981__ $$aI:(DE-Juel1)IAS-6-20130828