001     903785
005     20240705080646.0
024 7 _ |a 10.3389/fninf.2021.766697
|2 doi
024 7 _ |a 2128/30046
|2 Handle
024 7 _ |a 35069166
|2 pmid
024 7 _ |a WOS:000758018300001
|2 WOS
037 _ _ |a FZJ-2021-05425
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Herbers, Patrick
|0 P:(DE-Juel1)172766
|b 0
245 _ _ |a ConGen a simulator-agnostic visual language for definition and generation of connectivity in large and multiscale neural networks
260 _ _ |a Lausanne
|c 2022
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719987945_14554
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An open challenge on the road to unraveling the brain's multilevel organization is establishing techniques to research connectivity and dynamics at different scales in time and space, as well as the links between them. This work focuses on the design of a framework that facilitates the generation of multiscale connectivity in large neural networks using a symbolic visual language capable of representing the model at different structural levels—ConGen. This symbolic language allows researchers to create and visually analyze the generated networks independently of the simulator to be used, since the visual model is translated into a simulator-independent language. The simplicity of the front end visual representation, together with the simulator independence provided by the back end translation, combine into a framework to enhance collaboration among scientists with expertise at different scales of abstraction and from different fields. On the basis of two use cases, we introduce the features and possibilities of our proposed visual language and associated workflow. We demonstrate that ConGen enables the creation, editing, and visualization of multiscale biological neural networks and provides a whole workflow to produce simulation scripts from the visual representation of the model.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 1
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 2
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 3
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 4
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 5
700 1 _ |a Calvo, Iago
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Diaz, Sandra
|0 P:(DE-Juel1)165859
|b 2
|e Corresponding author
700 1 _ |a Robles Sanchez, Oscar David
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mata, Susana
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Toharia, Pablo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pastor, Luis
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Peyser, Alexander
|0 P:(DE-Juel1)161525
|b 7
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 8
700 1 _ |a Klijn, Wouter
|0 P:(DE-Juel1)168169
|b 9
|e Corresponding author
770 _ _ |a Neuroscience, Computing, Performance, and Benchmarks: Why It Matters to Neuroscience How Fast We Can Compute
773 _ _ |a 10.3389/fninf.2021.766697
|0 PERI:(DE-600)2452979-5
|p 766697
|t Frontiers in neuroinformatics
|v 15
|y 2022
|x 1662-5196
856 4 _ |u https://juser.fz-juelich.de/record/903785/files/ConGen.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903785
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161525
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)168169
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 1
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROINFORM : 2021
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T13:08:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T13:08:14Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-11T13:08:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 2
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21