000903791 001__ 903791
000903791 005__ 20230113085400.0
000903791 0247_ $$2doi$$a10.1021/acsaelm.0c00968
000903791 0247_ $$2WOS$$aWOS:000613935300042
000903791 037__ $$aFZJ-2021-05426
000903791 082__ $$a620
000903791 1001_ $$0P:(DE-HGF)0$$aMedhat, Ahmed$$b0
000903791 245__ $$aGraphene Nanoplatelet–Au Nanoparticle Hybrid as a Capacitive-Metal–Oxide–Semiconductor pH Sensor
000903791 260__ $$aWashington, DC$$bACS Publications$$c2021
000903791 3367_ $$2DRIVER$$aarticle
000903791 3367_ $$2DataCite$$aOutput Types/Journal article
000903791 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671619793_30681
000903791 3367_ $$2BibTeX$$aARTICLE
000903791 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903791 3367_ $$00$$2EndNote$$aJournal Article
000903791 500__ $$aKein Post-print vorhanden
000903791 520__ $$apH sensors, with high sensitivity, durability, and low cost, are considered to be essential tools in several applications such as laboratory experiments, water quality, agriculture, and healthcare. Because of their unique properties, carbon allotropes have attracted a lot of attention during the last decade to be utilized in several applications, in which pH sensing is one of them. In this work, a hybrid film of graphene nanoplatelets (GPs) and gold nanoparticles (GNPs), where the GNPs are embedded in the GP layer, was used as an active layer in an electronic pH senor based on a capacitive metal oxide semiconductor. Capacitance–voltage measurements have shown a change in the flatband voltage with changing the applied pH. The sensitivity of the GP–Au nanoparticle hybrid (GAH) film has been enhanced by a factor of 26.7% compared to the GP film. We refer the higher sensitivity to the increase in the surface potential of the GAH, which became n-doped by the Au nanoparticles, resulting in a change of the Fermi level of the GP layer. This sensor is easy to fabricate and demonstrates sensitivity that is higher than previously reported electronic pH sensitivities using different configurations.
000903791 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000903791 588__ $$aDataset connected to DataCite
000903791 7001_ $$0P:(DE-HGF)0$$aSalah, Dina$$b1
000903791 7001_ $$0P:(DE-Juel1)171802$$aBoichuk, Nazarii$$b2
000903791 7001_ $$0P:(DE-HGF)0$$aHassan, Ibrahim$$b3
000903791 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b4
000903791 7001_ $$00000-0002-8130-8693$$aKasry, Amal$$b5$$eCorresponding author
000903791 773__ $$0PERI:(DE-600)2949097-2$$a10.1021/acsaelm.0c00968$$gVol. 3, no. 1, p. 430 - 436$$n1$$p430 - 436$$tACS applied electronic materials$$v3$$x2637-6113$$y2021
000903791 8564_ $$uhttps://juser.fz-juelich.de/record/903791/files/acsaelm.0c00968.pdf$$yRestricted
000903791 909CO $$ooai:juser.fz-juelich.de:903791$$pVDB
000903791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171802$$aForschungszentrum Jülich$$b2$$kFZJ
000903791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b4$$kFZJ
000903791 9101_ $$0I:(DE-HGF)0$$60000-0002-8130-8693$$aExternal Institute$$b5$$kExtern
000903791 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000903791 9141_ $$y2021
000903791 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000903791 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000903791 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-09
000903791 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000903791 920__ $$lyes
000903791 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000903791 980__ $$ajournal
000903791 980__ $$aVDB
000903791 980__ $$aI:(DE-Juel1)IBI-3-20200312
000903791 980__ $$aUNRESTRICTED