000903797 001__ 903797
000903797 005__ 20240712113044.0
000903797 0247_ $$2doi$$a10.1021/acsaem.1c02667
000903797 0247_ $$2Handle$$a2128/29527
000903797 0247_ $$2altmetric$$aaltmetric:115007220
000903797 0247_ $$2WOS$$aWOS:000711236300002
000903797 037__ $$aFZJ-2021-05431
000903797 082__ $$a540
000903797 1001_ $$0P:(DE-Juel1)174298$$aIhrig, Martin$$b0$$eCorresponding author
000903797 245__ $$aPolymer–Ceramic Composite Cathode with Enhanced Storage Capacity Manufactured by Field-Assisted Sintering and Infiltration
000903797 260__ $$aWashington, DC$$bACS Publications$$c2021
000903797 3367_ $$2DRIVER$$aarticle
000903797 3367_ $$2DataCite$$aOutput Types/Journal article
000903797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639991222_10728
000903797 3367_ $$2BibTeX$$aARTICLE
000903797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903797 3367_ $$00$$2EndNote$$aJournal Article
000903797 520__ $$aPolymer–ceramic all-solid-state Li batteries (ASSLBs) combine the advantages of fully inorganic and polymer-based ASSLBs. In particular, the application of proposed polymer–ceramic composite cathodes could be essential for the enhancement of the energy storage capacity of ASSLBs. The use of a modified field-assisted sintering technique with adjustable pressure and with alternative mica foil enables the fabrication of porous cathodes at a reduced sintering temperature and without side phase formation. This allows sintering of a porous LiCoO2/Li7La3Zr2O12:Ta composite network suitable for polymer infiltration and assembly in an ASSLB from the cathode side. The ceramic LiCoO2/Li7La3Zr2O12:Ta composite cathodes infiltrated with an ion-conducting polymer have shown an enhanced areal storage capacity.
000903797 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000903797 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903797 7001_ $$0P:(DE-Juel1)176118$$aYe, Ruijie$$b1
000903797 7001_ $$0P:(DE-Juel1)164315$$aLaptev, Alexander$$b2$$ufzj
000903797 7001_ $$0P:(DE-Juel1)145209$$aGrüner, Daniel$$b3
000903797 7001_ $$0P:(DE-HGF)0$$aGuerdelli, Rayan$$b4
000903797 7001_ $$0P:(DE-Juel1)178008$$aScheld, Walter Sebastian$$b5
000903797 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b6
000903797 7001_ $$0P:(DE-Juel1)176785$$aWiemhöfer, Hans-Dieter$$b7
000903797 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b8
000903797 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b9
000903797 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.1c02667$$gVol. 4, no. 10, p. 10428 - 10432$$n10$$p10428 - 10432$$tACS applied energy materials$$v4$$x2574-0962$$y2021
000903797 8564_ $$uhttps://juser.fz-juelich.de/record/903797/files/acsaem.1c02667.pdf$$yRestricted
000903797 8564_ $$uhttps://juser.fz-juelich.de/record/903797/files/Polymer-Ceramic%20Composite%20Cathode%20-%20Gr%C3%BCner.pdf$$yPublished on 2021-10-05. Available in OpenAccess from 2022-10-05.
000903797 909CO $$ooai:juser.fz-juelich.de:903797$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174298$$aForschungszentrum Jülich$$b0$$kFZJ
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176118$$aForschungszentrum Jülich$$b1$$kFZJ
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164315$$aForschungszentrum Jülich$$b2$$kFZJ
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145209$$aForschungszentrum Jülich$$b3$$kFZJ
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178008$$aForschungszentrum Jülich$$b5$$kFZJ
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b6$$kFZJ
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176785$$aForschungszentrum Jülich$$b7$$kFZJ
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b8$$kFZJ
000903797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b9$$kFZJ
000903797 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000903797 9141_ $$y2021
000903797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2019$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000903797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000903797 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000903797 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000903797 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x2
000903797 9801_ $$aFullTexts
000903797 980__ $$ajournal
000903797 980__ $$aVDB
000903797 980__ $$aUNRESTRICTED
000903797 980__ $$aI:(DE-Juel1)IEK-1-20101013
000903797 980__ $$aI:(DE-Juel1)IEK-2-20101013
000903797 980__ $$aI:(DE-Juel1)IEK-12-20141217
000903797 981__ $$aI:(DE-Juel1)IMD-1-20101013
000903797 981__ $$aI:(DE-Juel1)IMD-4-20141217
000903797 981__ $$aI:(DE-Juel1)IMD-2-20101013