001     903797
005     20240712113044.0
024 7 _ |a 10.1021/acsaem.1c02667
|2 doi
024 7 _ |a 2128/29527
|2 Handle
024 7 _ |a altmetric:115007220
|2 altmetric
024 7 _ |a WOS:000711236300002
|2 WOS
037 _ _ |a FZJ-2021-05431
082 _ _ |a 540
100 1 _ |a Ihrig, Martin
|0 P:(DE-Juel1)174298
|b 0
|e Corresponding author
245 _ _ |a Polymer–Ceramic Composite Cathode with Enhanced Storage Capacity Manufactured by Field-Assisted Sintering and Infiltration
260 _ _ |a Washington, DC
|c 2021
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639991222_10728
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polymer–ceramic all-solid-state Li batteries (ASSLBs) combine the advantages of fully inorganic and polymer-based ASSLBs. In particular, the application of proposed polymer–ceramic composite cathodes could be essential for the enhancement of the energy storage capacity of ASSLBs. The use of a modified field-assisted sintering technique with adjustable pressure and with alternative mica foil enables the fabrication of porous cathodes at a reduced sintering temperature and without side phase formation. This allows sintering of a porous LiCoO2/Li7La3Zr2O12:Ta composite network suitable for polymer infiltration and assembly in an ASSLB from the cathode side. The ceramic LiCoO2/Li7La3Zr2O12:Ta composite cathodes infiltrated with an ion-conducting polymer have shown an enhanced areal storage capacity.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ye, Ruijie
|0 P:(DE-Juel1)176118
|b 1
700 1 _ |a Laptev, Alexander
|0 P:(DE-Juel1)164315
|b 2
|u fzj
700 1 _ |a Grüner, Daniel
|0 P:(DE-Juel1)145209
|b 3
700 1 _ |a Guerdelli, Rayan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Scheld, Walter Sebastian
|0 P:(DE-Juel1)178008
|b 5
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 6
700 1 _ |a Wiemhöfer, Hans-Dieter
|0 P:(DE-Juel1)176785
|b 7
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 8
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 9
773 _ _ |a 10.1021/acsaem.1c02667
|g Vol. 4, no. 10, p. 10428 - 10432
|0 PERI:(DE-600)2916551-9
|n 10
|p 10428 - 10432
|t ACS applied energy materials
|v 4
|y 2021
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/903797/files/acsaem.1c02667.pdf
|y Restricted
856 4 _ |y Published on 2021-10-05. Available in OpenAccess from 2022-10-05.
|u https://juser.fz-juelich.de/record/903797/files/Polymer-Ceramic%20Composite%20Cathode%20-%20Gr%C3%BCner.pdf
909 C O |o oai:juser.fz-juelich.de:903797
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174298
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176118
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145209
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178008
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)176785
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-04
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2019
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21