000903799 001__ 903799
000903799 005__ 20230228125815.0
000903799 0247_ $$2doi$$a10.1002/jmri.28029
000903799 0247_ $$2ISSN$$a1053-1807
000903799 0247_ $$2ISSN$$a1522-2586
000903799 0247_ $$2Handle$$a2128/32529
000903799 0247_ $$2pmid$$a34918429
000903799 0247_ $$2WOS$$aWOS:000730984900001
000903799 037__ $$aFZJ-2021-05433
000903799 082__ $$a610
000903799 1001_ $$0P:(DE-Juel1)179152$$aChen, Qingping$$b0
000903799 245__ $$aCompressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects
000903799 260__ $$aNew York, NY$$bWiley-Liss$$c2022
000903799 3367_ $$2DRIVER$$aarticle
000903799 3367_ $$2DataCite$$aOutput Types/Journal article
000903799 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668412879_11666
000903799 3367_ $$2BibTeX$$aARTICLE
000903799 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903799 3367_ $$00$$2EndNote$$aJournal Article
000903799 520__ $$aSodium (23Na) yields the second strongest nuclear magnetic resonance (NMR) signal in biological tissues and plays a vital role in cell physiology. Sodium magnetic resonance imaging (MRI) can provide insights into cell integrity and tissue viability relative to pathologies without significant anatomical alternations, and thus it is considered to be a potential surrogate biomarker that provides complementary information for standard hydrogen (1H) MRI in a noninvasive and quantitative manner. However, sodium MRI suffers from a relatively low signal-to-noise ratio and long acquisition times due to its relatively low NMR sensitivity. Compressed sensing-based (CS-based) methods have been shown to accelerate sodium imaging and/or improve sodium image quality significantly. In this manuscript, the basic concepts of CS and how CS might be applied to improve sodium MRI are described, and the historical milestones of CS-based sodium MRI are briefly presented. Representative advanced techniques and evaluation methods are discussed in detail, followed by an expose of clinical applications in multiple anatomical regions and diseases as well as thoughts and suggestions on potential future research prospects of CS in sodium MRI.
000903799 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000903799 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903799 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b1
000903799 7001_ $$0P:(DE-Juel1)156200$$aWorthoff, Wieland A.$$b2$$eCorresponding author
000903799 773__ $$0PERI:(DE-600)1497154-9$$a10.1002/jmri.28029$$gp. jmri.28029$$n5$$p1340-1356$$tJournal of magnetic resonance imaging$$v55$$x1053-1807$$y2022
000903799 8564_ $$uhttps://juser.fz-juelich.de/record/903799/files/Magnetic%20Resonance%20Imaging%20-%202021%20-%20Chen%20-%20Compressed%20Sensing%20in%20Sodium%20Magnetic%20Resonance%20Imaging%20Techniques%20.pdf$$yOpenAccess
000903799 8767_ $$d2022-12-19$$eHybrid-OA$$jDEAL
000903799 909CO $$ooai:juser.fz-juelich.de:903799$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000903799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179152$$aForschungszentrum Jülich$$b0$$kFZJ
000903799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b1$$kFZJ
000903799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156200$$aForschungszentrum Jülich$$b2$$kFZJ
000903799 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000903799 9141_ $$y2022
000903799 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903799 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000903799 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000903799 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903799 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903799 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger
000903799 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON IMAGING : 2021$$d2022-11-16
000903799 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000903799 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000903799 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000903799 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000903799 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-16
000903799 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MAGN RESON IMAGING : 2021$$d2022-11-16
000903799 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000903799 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000903799 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000903799 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000903799 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000903799 980__ $$ajournal
000903799 980__ $$aVDB
000903799 980__ $$aUNRESTRICTED
000903799 980__ $$aI:(DE-Juel1)INM-4-20090406
000903799 980__ $$aAPC
000903799 9801_ $$aAPC
000903799 9801_ $$aFullTexts