000903812 001__ 903812
000903812 005__ 20240712113239.0
000903812 0247_ $$2doi$$a10.1149/1945-7111/ac34cc
000903812 0247_ $$2ISSN$$a0013-4651
000903812 0247_ $$2ISSN$$a0096-4743
000903812 0247_ $$2ISSN$$a0096-4786
000903812 0247_ $$2ISSN$$a1945-6859
000903812 0247_ $$2ISSN$$a1945-7111
000903812 0247_ $$2ISSN$$a2156-7395
000903812 0247_ $$2Handle$$a2128/29531
000903812 0247_ $$2WOS$$aWOS:000717274400001
000903812 037__ $$aFZJ-2021-05445
000903812 082__ $$a660
000903812 1001_ $$0P:(DE-Juel1)176513$$aLohmann-Richters, F. P.$$b0$$eCorresponding author
000903812 245__ $$aReview—Challenges and Opportunities for Increased Current Density in Alkaline Electrolysis by Increasing the Operating Temperature
000903812 260__ $$aBristol$$bIOP Publishing$$c2021
000903812 3367_ $$2DRIVER$$aarticle
000903812 3367_ $$2DataCite$$aOutput Types/Journal article
000903812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639996994_6358
000903812 3367_ $$2BibTeX$$aARTICLE
000903812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903812 3367_ $$00$$2EndNote$$aJournal Article
000903812 520__ $$aThe highly-efficient, low-cost, large-scale production of green hydrogen by means of electrolysis is urgently needed for achieving a decarbonized energy supply. Alkaline water electrolysis is a wellestablished technology with relatively low costs which does not require scarce noble metal catalysts, but it suffers from low current densities. Increasing the operating temperature can allow this limitation to be overcome. This article summarizes both long-standing and recent developments in alkaline water electrolysis at increased temperature and sheds light on the challenges and unique opportunities of this approach. It is found that electrochemical improvements induced by higher temperature enable competitive current densities and offer unique possibilities for thermal management. The selection and development of stable materials, catalysts, and diaphragms is challenging, but some have proven long-term stability up to at least 150 °C and promising candidates are available at up to 200 °C. Further research will allow the present challenges to be overcome by understanding and improving the basic processes and components for alkaline electrolysis at increased temperature and capitalizing on its unique advantages.
000903812 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903812 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903812 7001_ $$0P:(DE-Juel1)180890$$aRenz, S.$$b1
000903812 7001_ $$0P:(DE-Juel1)129883$$aLehnert, W.$$b2$$ufzj
000903812 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b3$$ufzj
000903812 7001_ $$0P:(DE-Juel1)145276$$aCarmo, M.$$b4$$ufzj
000903812 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ac34cc$$gVol. 168, no. 11, p. 114501 -$$n11$$p114501 -$$tJournal of the Electrochemical Society$$v168$$x0013-4651$$y2021
000903812 8564_ $$uhttps://juser.fz-juelich.de/record/903812/files/Lohmann-Richters_2021_J._Electrochem._Soc._168_114501.pdf$$yOpenAccess
000903812 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000903812 909CO $$ooai:juser.fz-juelich.de:903812$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000903812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176513$$aForschungszentrum Jülich$$b0$$kFZJ
000903812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180890$$aForschungszentrum Jülich$$b1$$kFZJ
000903812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b2$$kFZJ
000903812 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b2$$kRWTH
000903812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b3$$kFZJ
000903812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b4$$kFZJ
000903812 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903812 9141_ $$y2021
000903812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000903812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000903812 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000903812 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903812 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000903812 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000903812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000903812 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000903812 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2019$$d2021-01-27
000903812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000903812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000903812 920__ $$lyes
000903812 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000903812 9801_ $$aFullTexts
000903812 980__ $$ajournal
000903812 980__ $$aVDB
000903812 980__ $$aUNRESTRICTED
000903812 980__ $$aI:(DE-Juel1)IEK-14-20191129
000903812 980__ $$aAPC
000903812 981__ $$aI:(DE-Juel1)IET-4-20191129