001     903812
005     20240712113239.0
024 7 _ |a 10.1149/1945-7111/ac34cc
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a 2128/29531
|2 Handle
024 7 _ |a WOS:000717274400001
|2 WOS
037 _ _ |a FZJ-2021-05445
082 _ _ |a 660
100 1 _ |a Lohmann-Richters, F. P.
|0 P:(DE-Juel1)176513
|b 0
|e Corresponding author
245 _ _ |a Review—Challenges and Opportunities for Increased Current Density in Alkaline Electrolysis by Increasing the Operating Temperature
260 _ _ |a Bristol
|c 2021
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639996994_6358
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The highly-efficient, low-cost, large-scale production of green hydrogen by means of electrolysis is urgently needed for achieving a decarbonized energy supply. Alkaline water electrolysis is a wellestablished technology with relatively low costs which does not require scarce noble metal catalysts, but it suffers from low current densities. Increasing the operating temperature can allow this limitation to be overcome. This article summarizes both long-standing and recent developments in alkaline water electrolysis at increased temperature and sheds light on the challenges and unique opportunities of this approach. It is found that electrochemical improvements induced by higher temperature enable competitive current densities and offer unique possibilities for thermal management. The selection and development of stable materials, catalysts, and diaphragms is challenging, but some have proven long-term stability up to at least 150 °C and promising candidates are available at up to 200 °C. Further research will allow the present challenges to be overcome by understanding and improving the basic processes and components for alkaline electrolysis at increased temperature and capitalizing on its unique advantages.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Renz, S.
|0 P:(DE-Juel1)180890
|b 1
700 1 _ |a Lehnert, W.
|0 P:(DE-Juel1)129883
|b 2
|u fzj
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 3
|u fzj
700 1 _ |a Carmo, M.
|0 P:(DE-Juel1)145276
|b 4
|u fzj
773 _ _ |a 10.1149/1945-7111/ac34cc
|g Vol. 168, no. 11, p. 114501 -
|0 PERI:(DE-600)2002179-3
|n 11
|p 114501 -
|t Journal of the Electrochemical Society
|v 168
|y 2021
|x 0013-4651
856 4 _ |u https://juser.fz-juelich.de/record/903812/files/Lohmann-Richters_2021_J._Electrochem._Soc._168_114501.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903812
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180890
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)129883
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145276
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21