001     903814
005     20240712113239.0
024 7 _ |a 10.1002/solr.202100479
|2 doi
024 7 _ |a 2128/31166
|2 Handle
024 7 _ |a altmetric:115840607
|2 altmetric
024 7 _ |a WOS:000697629100001
|2 WOS
037 _ _ |a FZJ-2021-05447
082 _ _ |a 600
100 1 _ |a Calnan, Sonya
|0 0000-0002-8286-7075
|b 0
|e Corresponding author
245 _ _ |a Development of Various Photovoltaic‐Driven Water Electrolysis Technologies for Green Solar Hydrogen Generation
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652678488_21300
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Direct solar hydrogen generation via a combination of photovoltaics (PV) and water electrolysis can potentially ensure a sustainable energy supply while minimizing greenhouse emissions. The PECSYS project aims at demonstrating a solar-driven electrochemical hydrogen generation system with an area >10 m2 with high efficiency and at reasonable cost. Thermally integrated PV electrolyzers (ECs) using thin-film silicon, undoped, and silver-doped Cu(In,Ga)Se2 and silicon heterojunction PV combined with alkaline electrolysis to form one unit are developed on a prototype level with solar collection areas in the range from 64 to 2600 cm2 with the solar-to-hydrogen (StH) efficiency ranging from ≈4 to 13%. Electrical direct coupling of PV modules to a proton exchange membrane EC to test the effects of bifaciality (730 cm2 solar collection area) and to study the long-term operation under outdoor conditions (10 m2 collection area) is also investigated. In both cases, StH efficiencies exceeding 10% can be maintained over the test periods used. All the StH efficiencies reported are based on measured gas outflow using mass flow meters.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bagacki, Rory
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bao, Fuxi
|0 0000-0003-0191-1191
|b 2
700 1 _ |a Dorbandt, Iris
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kemppainen, Erno
|0 0000-0003-3858-020X
|b 4
700 1 _ |a Schary, Christian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schlatmann, Rutger
|0 0000-0002-5951-9435
|b 6
700 1 _ |a Leonardi, Marco
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lombardo, Salvatore A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Milazzo, R. Gabriella
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Privitera, Stefania M. S.
|0 0000-0001-8001-1575
|b 10
700 1 _ |a Bizzarri, Fabrizio
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Connelli, Carmelo
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Consoli, Daniele
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gerardi, Cosimo
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Zani, Pierenrico
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 16
|u fzj
700 1 _ |a Haas, Stefan
|0 P:(DE-Juel1)130246
|b 17
|u fzj
700 1 _ |a Lee, Minoh
|0 P:(DE-Juel1)173834
|b 18
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 19
|u fzj
700 1 _ |a Zwaygardt, Walter
|0 P:(DE-Juel1)129951
|b 20
700 1 _ |a Oscarsson, Johan
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Stolt, Lars
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Edoff, Marika
|0 0000-0003-4111-4613
|b 23
700 1 _ |a Edvinsson, Tomas
|0 0000-0003-2759-7356
|b 24
700 1 _ |a Pehlivan, Ilknur Bayrak
|0 0000-0002-4362-6148
|b 25
773 _ _ |a 10.1002/solr.202100479
|g p. 2100479 -
|0 PERI:(DE-600)2882014-9
|n 5
|p 2100479 -
|t Solar RRL
|v 6
|y 2022
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/903814/files/Solar%20RRL%20-%202021%20-%20Calnan%20-%20Development%20of%20Various%20Photovoltaic%E2%80%90Driven%20Water%20Electrolysis%20Technologies%20for%20Green%20Solar.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903814
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)130246
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)129951
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21