000903823 001__ 903823
000903823 005__ 20240712113239.0
000903823 0247_ $$2doi$$a10.3390/en14175484
000903823 0247_ $$2Handle$$a2128/29535
000903823 0247_ $$2altmetric$$aaltmetric:116988033
000903823 0247_ $$2WOS$$aWOS:000694181000001
000903823 037__ $$aFZJ-2021-05456
000903823 082__ $$a620
000903823 1001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b0$$eCorresponding author
000903823 245__ $$aDesign and Modeling of Metallic Bipolar Plates for a Fuel Cell Range Extender
000903823 260__ $$aBasel$$bMDPI$$c2021
000903823 3367_ $$2DRIVER$$aarticle
000903823 3367_ $$2DataCite$$aOutput Types/Journal article
000903823 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640004256_12690
000903823 3367_ $$2BibTeX$$aARTICLE
000903823 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903823 3367_ $$00$$2EndNote$$aJournal Article
000903823 520__ $$aFuel cells, designed for mobile applications, should feature compact and low-weight designs. This study describes a design process that fulfills the specific needs of target applications and the production process. The key challenge for this type of metallic bipolar plate is that the combination of two plates creates three flow fields, namely an anode side, a cathode side, and a coolant. This illustrates the fact that each cell constitutes an electrochemical converter with an integrated heat exchanger. The final arrangement is comprised of plates with parallel and separate serpentine channel configurations. The anode and cathode sides are optimized for operation under dry conditions. The final plate offers an almost perfect distribution of coolant flow over the active area. The high quality of this distribution is almost independent of the coolant mass flow, even if one of the six inlet channels is blocked. The software employed (OpenFOAM and SALOME) is freely available and can be used with templates
000903823 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903823 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903823 7001_ $$0P:(DE-Juel1)184783$$aNikitsina, Ekaterina$$b1$$ufzj
000903823 7001_ $$0P:(DE-Juel1)129863$$aJanssen, Holger$$b2$$ufzj
000903823 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b3
000903823 7001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b4
000903823 7001_ $$0P:(DE-Juel1)157835$$aBeale, Steven B.$$b5
000903823 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6
000903823 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en14175484$$gVol. 14, no. 17, p. 5484 -$$n17$$p5484 -$$tEnergies$$v14$$x1996-1073$$y2021
000903823 8564_ $$uhttps://juser.fz-juelich.de/record/903823/files/energies-14-05484.pdf$$yOpenAccess
000903823 909CO $$ooai:juser.fz-juelich.de:903823$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b0$$kFZJ
000903823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184783$$aForschungszentrum Jülich$$b1$$kFZJ
000903823 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)184783$$aRWTH Aachen$$b1$$kRWTH
000903823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129863$$aForschungszentrum Jülich$$b2$$kFZJ
000903823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b3$$kFZJ
000903823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b4$$kFZJ
000903823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b5$$kFZJ
000903823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b6$$kFZJ
000903823 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b6$$kRWTH
000903823 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903823 9141_ $$y2021
000903823 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-05-04
000903823 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903823 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2019$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903823 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000903823 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000903823 920__ $$lyes
000903823 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000903823 9801_ $$aFullTexts
000903823 980__ $$ajournal
000903823 980__ $$aVDB
000903823 980__ $$aUNRESTRICTED
000903823 980__ $$aI:(DE-Juel1)IEK-14-20191129
000903823 981__ $$aI:(DE-Juel1)IET-4-20191129