000903833 001__ 903833
000903833 005__ 20220210164010.0
000903833 0247_ $$2doi$$a10.1371/journal.pcbi.1009129
000903833 0247_ $$2ISSN$$a1553-734X
000903833 0247_ $$2ISSN$$a1553-7358
000903833 0247_ $$2Handle$$a2128/30366
000903833 0247_ $$2altmetric$$aaltmetric:109560368
000903833 0247_ $$2pmid$$apmid:34260596
000903833 0247_ $$2WOS$$aWOS:000677707000002
000903833 037__ $$aFZJ-2021-05466
000903833 041__ $$aEnglish
000903833 082__ $$a610
000903833 1001_ $$00000-0001-5289-9837$$aHashemi, Meysam$$b0$$eCorresponding author
000903833 245__ $$aOn the influence of prior information evaluated by fully Bayesian criteria in a personalized whole-brain model of epilepsy spread
000903833 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2021
000903833 3367_ $$2DRIVER$$aarticle
000903833 3367_ $$2DataCite$$aOutput Types/Journal article
000903833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642518318_6599
000903833 3367_ $$2BibTeX$$aARTICLE
000903833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903833 3367_ $$00$$2EndNote$$aJournal Article
000903833 520__ $$aIndividualized anatomical information has been used as prior knowledge in Bayesian inference paradigms of whole-brain network models. However, the actual sensitivity to such personalized information in priors is still unknown. In this study, we introduce the use of fully Bayesian information criteria and leave-one-out cross-validation technique on the subject-specific information to assess different epileptogenicity hypotheses regarding the location of pathological brain areas based on a priori knowledge from dynamical system properties. The Bayesian Virtual Epileptic Patient (BVEP) model, which relies on the fusion of structural data of individuals, a generative model of epileptiform discharges, and a self-tuning Monte Carlo sampling algorithm, is used to infer the spatial map of epileptogenicity across different brain areas. Our results indicate that measuring the out-of-sample prediction accuracy of the BVEP model with informative priors enables reliable and efficient evaluation of potential hypotheses regarding the degree of epileptogenicity across different brain regions. In contrast, while using uninformative priors, the information criteria are unable to provide strong evidence about the epileptogenicity of brain areas. We also show that the fully Bayesian criteria correctly assess different hypotheses about both structural and functional components of whole-brain models that differ across individuals. The fully Bayesian information-theory based approach used in this study suggests a patient-specific strategy for epileptogenicity hypothesis testing in generative brain network models of epilepsy to improve surgical outcomes.
000903833 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000903833 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x1
000903833 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
000903833 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000903833 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000903833 536__ $$0G:(EU-Grant)826421$$aVirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421)$$c826421$$fH2020-SC1-DTH-2018-1$$x5
000903833 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x6
000903833 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903833 7001_ $$00000-0001-7426-3872$$aVattikonda, Anirudh N.$$b1
000903833 7001_ $$00000-0002-5006-9765$$aSip, Viktor$$b2
000903833 7001_ $$0P:(DE-Juel1)165859$$aDiaz-Pier, Sandra$$b3
000903833 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b4
000903833 7001_ $$00000-0002-4060-8649$$aWang, Huifang$$b5
000903833 7001_ $$00000-0002-4435-2257$$aGuye, Maxime$$b6
000903833 7001_ $$0P:(DE-HGF)0$$aBartolomei, Fabrice$$b7
000903833 7001_ $$0P:(DE-HGF)0$$aWoodman, Marmaduke M.$$b8
000903833 7001_ $$00000-0002-8251-8860$$aJirsa, Viktor K.$$b9$$eCorresponding author
000903833 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1009129$$gVol. 17, no. 7, p. e1009129 -$$n7$$pe1009129 -$$tPLoS Computational Biology$$v17$$x1553-734X$$y2021
000903833 8564_ $$uhttps://juser.fz-juelich.de/record/903833/files/journal.pcbi.1009129-1.pdf$$yOpenAccess
000903833 909CO $$ooai:juser.fz-juelich.de:903833$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000903833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b3$$kFZJ
000903833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich$$b4$$kFZJ
000903833 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000903833 9141_ $$y2021
000903833 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903833 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2019$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903833 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000903833 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000903833 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000903833 980__ $$ajournal
000903833 980__ $$aVDB
000903833 980__ $$aUNRESTRICTED
000903833 980__ $$aI:(DE-Juel1)JSC-20090406
000903833 9801_ $$aFullTexts