Home > Publications database > On the influence of prior information evaluated by fully Bayesian criteria in a personalized whole-brain model of epilepsy spread > print |
001 | 903833 | ||
005 | 20220210164010.0 | ||
024 | 7 | _ | |a 10.1371/journal.pcbi.1009129 |2 doi |
024 | 7 | _ | |a 1553-734X |2 ISSN |
024 | 7 | _ | |a 1553-7358 |2 ISSN |
024 | 7 | _ | |a 2128/30366 |2 Handle |
024 | 7 | _ | |a altmetric:109560368 |2 altmetric |
024 | 7 | _ | |a pmid:34260596 |2 pmid |
024 | 7 | _ | |a WOS:000677707000002 |2 WOS |
037 | _ | _ | |a FZJ-2021-05466 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Hashemi, Meysam |0 0000-0001-5289-9837 |b 0 |e Corresponding author |
245 | _ | _ | |a On the influence of prior information evaluated by fully Bayesian criteria in a personalized whole-brain model of epilepsy spread |
260 | _ | _ | |a San Francisco, Calif. |c 2021 |b Public Library of Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1642518318_6599 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Individualized anatomical information has been used as prior knowledge in Bayesian inference paradigms of whole-brain network models. However, the actual sensitivity to such personalized information in priors is still unknown. In this study, we introduce the use of fully Bayesian information criteria and leave-one-out cross-validation technique on the subject-specific information to assess different epileptogenicity hypotheses regarding the location of pathological brain areas based on a priori knowledge from dynamical system properties. The Bayesian Virtual Epileptic Patient (BVEP) model, which relies on the fusion of structural data of individuals, a generative model of epileptiform discharges, and a self-tuning Monte Carlo sampling algorithm, is used to infer the spatial map of epileptogenicity across different brain areas. Our results indicate that measuring the out-of-sample prediction accuracy of the BVEP model with informative priors enables reliable and efficient evaluation of potential hypotheses regarding the degree of epileptogenicity across different brain regions. In contrast, while using uninformative priors, the information criteria are unable to provide strong evidence about the epileptogenicity of brain areas. We also show that the fully Bayesian criteria correctly assess different hypotheses about both structural and functional components of whole-brain models that differ across individuals. The fully Bayesian information-theory based approach used in this study suggests a patient-specific strategy for epileptogenicity hypothesis testing in generative brain network models of epilepsy to improve surgical outcomes. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 1 |
536 | _ | _ | |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |0 G:(DE-Juel1)JL SMHB-2021-2027 |c JL SMHB-2021-2027 |x 2 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 3 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 4 |
536 | _ | _ | |a VirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421) |0 G:(EU-Grant)826421 |c 826421 |f H2020-SC1-DTH-2018-1 |x 5 |
536 | _ | _ | |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |c PHD-NO-GRANT-20170405 |x 6 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Vattikonda, Anirudh N. |0 0000-0001-7426-3872 |b 1 |
700 | 1 | _ | |a Sip, Viktor |0 0000-0002-5006-9765 |b 2 |
700 | 1 | _ | |a Diaz-Pier, Sandra |0 P:(DE-Juel1)165859 |b 3 |
700 | 1 | _ | |a Peyser, Alexander |0 P:(DE-Juel1)161525 |b 4 |
700 | 1 | _ | |a Wang, Huifang |0 0000-0002-4060-8649 |b 5 |
700 | 1 | _ | |a Guye, Maxime |0 0000-0002-4435-2257 |b 6 |
700 | 1 | _ | |a Bartolomei, Fabrice |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Woodman, Marmaduke M. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Jirsa, Viktor K. |0 0000-0002-8251-8860 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1371/journal.pcbi.1009129 |g Vol. 17, no. 7, p. e1009129 - |0 PERI:(DE-600)2193340-6 |n 7 |p e1009129 - |t PLoS Computational Biology |v 17 |y 2021 |x 1553-734X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/903833/files/journal.pcbi.1009129-1.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:903833 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165859 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)161525 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLOS COMPUT BIOL : 2019 |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|