000903836 001__ 903836 000903836 005__ 20240712113239.0 000903836 0247_ $$2doi$$a10.3390/cryst11070744 000903836 0247_ $$2Handle$$a2128/29542 000903836 0247_ $$2altmetric$$aaltmetric:108551622 000903836 0247_ $$2WOS$$aWOS:000676215500001 000903836 037__ $$aFZJ-2021-05469 000903836 082__ $$a540 000903836 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b0$$eCorresponding author 000903836 245__ $$aIs Reduced Strontium Titanate a Semiconductor or a Metal? 000903836 260__ $$aBasel$$bMDPI$$c2021 000903836 3367_ $$2DRIVER$$aarticle 000903836 3367_ $$2DataCite$$aOutput Types/Journal article 000903836 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640008477_23727 000903836 3367_ $$2BibTeX$$aARTICLE 000903836 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000903836 3367_ $$00$$2EndNote$$aJournal Article 000903836 520__ $$aIn recent decades, the behavior of SrTiO3 upon annealing in reducing conditions has been under intense academic scrutiny. Classically, its conductivity can be described using point defect chemistry and predicting n-type or p-type semiconducting behavior depending on oxygen activity. In contrast, many examples of metallic behavior induced by thermal reduction have recently appeared in the literature, challenging this established understanding. In this study, we aim to resolve this contradiction by demonstrating that an initially insulating, as-received SrTiO3 single crystal can indeed be reduced to a metallic state, and is even stable against room temperature reoxidation. However, once the sample has been oxidized at a high temperature, subsequent reduction can no longer be used to induce metallic behavior, but semiconducting behavior in agreement with the predictions of point defect chemistry is observed. Our results indicate that the dislocation-rich surface layer plays a decisive role and that its local chemical composition can be changed depending on annealing conditions. This reveals that the prediction of the macroscopic electronic properties of SrTiO3 is a highly complex task, and not only the current temperature and oxygen activity but also the redox history play an important role 000903836 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0 000903836 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000903836 7001_ $$0P:(DE-HGF)0$$aGuguschev, Christo$$b1 000903836 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b2 000903836 7001_ $$00000-0002-5259-3499$$aBette, Sebastian$$b3 000903836 7001_ $$0P:(DE-HGF)0$$aSzot, Kristof$$b4 000903836 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst11070744$$gVol. 11, no. 7, p. 744 -$$n7$$p744 -$$tCrystals$$v11$$x2073-4352$$y2021 000903836 8564_ $$uhttps://juser.fz-juelich.de/record/903836/files/crystals-11-00744-v2.pdf$$yOpenAccess 000903836 909CO $$ooai:juser.fz-juelich.de:903836$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000903836 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b0$$kFZJ 000903836 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b2$$kFZJ 000903836 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b2$$kRWTH 000903836 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0 000903836 9141_ $$y2021 000903836 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03 000903836 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000903836 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2019$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000903836 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03 000903836 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03 000903836 920__ $$lyes 000903836 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0 000903836 9801_ $$aFullTexts 000903836 980__ $$ajournal 000903836 980__ $$aVDB 000903836 980__ $$aUNRESTRICTED 000903836 980__ $$aI:(DE-Juel1)IEK-14-20191129 000903836 981__ $$aI:(DE-Juel1)IET-4-20191129