001     903849
005     20230123110546.0
024 7 _ |a 10.1111/pce.14239
|2 doi
024 7 _ |a 0140-7791
|2 ISSN
024 7 _ |a 1365-3040
|2 ISSN
024 7 _ |a 2128/30933
|2 Handle
024 7 _ |a altmetric:118192253
|2 altmetric
024 7 _ |a pmid:34859447
|2 pmid
024 7 _ |a WOS:000741396900001
|2 WOS
037 _ _ |a FZJ-2021-05482
082 _ _ |a 580
100 1 _ |a Estelle, Deboever
|0 0000-0001-5707-9483
|b 0
245 _ _ |a Modulation of Plant Plasma Membrane Structure by Exogenous Fatty Acid Hydroperoxide is a Potential Perception Mechanism for their Eliciting Activity
260 _ _ |a Oxford [u.a.]
|c 2022
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648470323_16318
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this work, the potential of 13(S)-hydroperoxy-(9Z,11E)-octadecadienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action are investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. Relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e MARIA: Magnetic reflectometer with high incident angle
|f NL5N
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)MARIA-20140101
|5 EXP:(DE-MLZ)MARIA-20140101
|6 EXP:(DE-MLZ)NL5N-20140101
|x 0
700 1 _ |a Géraldine, Van Aubel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Valeria, Rondelli
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Koutsioumpas, Alexandros
|0 P:(DE-Juel1)158075
|b 3
700 1 _ |a Marion, Mathelie-Guinlet
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dufrene Yves, F.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Marc, Ongena
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Laurence, Lins
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pierre, Van Cutsem
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Marie-Laure, Fauconnier
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Magali, Deleu
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1111/pce.14239
|g p. pce.14239
|0 PERI:(DE-600)2020843-1
|n 4
|p 1082-1095
|t Plant, cell & environment
|v 45
|y 2022
|x 0140-7791
856 4 _ |u https://juser.fz-juelich.de/record/903849/files/Plant%20Cell%20Environment%20-%202021%20-%20Deboever%20-%20Modulation%20of%20plant%20plasma%20membrane%20structure%20by%20exogenous%20fatty%20acid.pdf
856 4 _ |y Published on 2021-12-03. Available in OpenAccess from 2022-12-03.
|u https://juser.fz-juelich.de/record/903849/files/koutsioumpas_Deboever%20et%20al.%202022%20-%20Modulation%20of%20Plant%20Plasma%20Membrane%20Structure%20by%20Exogenous%20Fatty%20Acid%20Hydroperoxide%20is%20a%20Potential%20Perception%20Mechanisme%20of%20Elicitat.pdf
909 C O |o oai:juser.fz-juelich.de:903849
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)158075
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-24
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT CELL ENVIRON : 2021
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT CELL ENVIRON : 2021
|d 2022-11-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21