Home > Publications database > Modulation of Plant Plasma Membrane Structure by Exogenous Fatty Acid Hydroperoxide is a Potential Perception Mechanism for their Eliciting Activity > print |
001 | 903849 | ||
005 | 20230123110546.0 | ||
024 | 7 | _ | |a 10.1111/pce.14239 |2 doi |
024 | 7 | _ | |a 0140-7791 |2 ISSN |
024 | 7 | _ | |a 1365-3040 |2 ISSN |
024 | 7 | _ | |a 2128/30933 |2 Handle |
024 | 7 | _ | |a altmetric:118192253 |2 altmetric |
024 | 7 | _ | |a pmid:34859447 |2 pmid |
024 | 7 | _ | |a WOS:000741396900001 |2 WOS |
037 | _ | _ | |a FZJ-2021-05482 |
082 | _ | _ | |a 580 |
100 | 1 | _ | |a Estelle, Deboever |0 0000-0001-5707-9483 |b 0 |
245 | _ | _ | |a Modulation of Plant Plasma Membrane Structure by Exogenous Fatty Acid Hydroperoxide is a Potential Perception Mechanism for their Eliciting Activity |
260 | _ | _ | |a Oxford [u.a.] |c 2022 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648470323_16318 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this work, the potential of 13(S)-hydroperoxy-(9Z,11E)-octadecadienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action are investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. Relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events. |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
650 | 2 | 7 | |a Biology |0 V:(DE-MLZ)SciArea-160 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Health and Life |0 V:(DE-MLZ)GC-130-2016 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e MARIA: Magnetic reflectometer with high incident angle |f NL5N |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)MARIA-20140101 |5 EXP:(DE-MLZ)MARIA-20140101 |6 EXP:(DE-MLZ)NL5N-20140101 |x 0 |
700 | 1 | _ | |a Géraldine, Van Aubel |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Valeria, Rondelli |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Koutsioumpas, Alexandros |0 P:(DE-Juel1)158075 |b 3 |
700 | 1 | _ | |a Marion, Mathelie-Guinlet |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Dufrene Yves, F. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Marc, Ongena |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Laurence, Lins |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Pierre, Van Cutsem |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Marie-Laure, Fauconnier |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Magali, Deleu |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1111/pce.14239 |g p. pce.14239 |0 PERI:(DE-600)2020843-1 |n 4 |p 1082-1095 |t Plant, cell & environment |v 45 |y 2022 |x 0140-7791 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/903849/files/Plant%20Cell%20Environment%20-%202021%20-%20Deboever%20-%20Modulation%20of%20plant%20plasma%20membrane%20structure%20by%20exogenous%20fatty%20acid.pdf |
856 | 4 | _ | |y Published on 2021-12-03. Available in OpenAccess from 2022-12-03. |u https://juser.fz-juelich.de/record/903849/files/koutsioumpas_Deboever%20et%20al.%202022%20-%20Modulation%20of%20Plant%20Plasma%20Membrane%20Structure%20by%20Exogenous%20Fatty%20Acid%20Hydroperoxide%20is%20a%20Potential%20Perception%20Mechanisme%20of%20Elicitat.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:903849 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)158075 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l From Matter to Materials and Life |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-30 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-24 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT CELL ENVIRON : 2021 |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLANT CELL ENVIRON : 2021 |d 2022-11-24 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 2 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|