000903865 001__ 903865
000903865 005__ 20240712113149.0
000903865 0247_ $$2doi$$a10.1021/acscatal.1c04791
000903865 0247_ $$2Handle$$a2128/29550
000903865 0247_ $$2altmetric$$aaltmetric:117209524
000903865 0247_ $$2WOS$$aWOS:000753063400022
000903865 037__ $$aFZJ-2021-05498
000903865 082__ $$a540
000903865 1001_ $$0P:(DE-Juel1)180589$$aZhu, Xinwei$$b0
000903865 245__ $$aElectrochemical CO 2 Reduction at Silver from a Local Perspective
000903865 260__ $$aWashington, DC$$bACS$$c2021
000903865 3367_ $$2DRIVER$$aarticle
000903865 3367_ $$2DataCite$$aOutput Types/Journal article
000903865 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652092601_3556
000903865 3367_ $$2BibTeX$$aARTICLE
000903865 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903865 3367_ $$00$$2EndNote$$aJournal Article
000903865 520__ $$aThe electrochemical reduction of CO2 to chemical fuels and value-added chemicals is a viable pathway to store renewably generated electrical energy and to mitigate the negative impact of anthropogenic CO2 production. Herein, we study how the local reaction environment dictates the mechanism and kinetics of CO2 reduction to CO at an Ag electrode. The local reaction environment is determined using a hierarchical model that accounts for multistep reaction kinetics, specific surface charging state at a given electrode potential, and mass transport phenomena. The model reveals vital mechanistic insights into the reaction behavior. The increasing Tafel slope with overpotential is seen to be influenced by the surface charging relation and mass transport effects. In addition, the decrease of the CO current density at high overpotentials is found to be caused not only by the decrease in CO2 concentration due to mass transport, surface charge effects, and pH increase but also by lateral interactions between HCOOad, COOHad, and Had. Moreover, we explore how the electrolyte properties, including bicarbonate concentration, solvated cation size, and CO2 partial pressure, tune the local reaction environment.
000903865 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903865 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903865 7001_ $$0P:(DE-Juel1)185067$$aHuang, Jun$$b1
000903865 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b2$$eCorresponding author
000903865 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.1c04791$$gVol. 11, no. 23, p. 14521 - 14532$$n23$$p14521 - 14532$$tACS catalysis$$v11$$x2155-5435$$y2021
000903865 8564_ $$uhttps://juser.fz-juelich.de/record/903865/files/Invoice_APC600264076.pdf
000903865 8564_ $$uhttps://juser.fz-juelich.de/record/903865/files/acscatal.1c04791.pdf$$yOpenAccess
000903865 8767_ $$8APC600264076$$92021-11-04$$d2021-11-08$$eHybrid-OA$$jZahlung erfolgt$$z3750 USD / Belegnr.: 1200173140
000903865 909CO $$ooai:juser.fz-juelich.de:903865$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000903865 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180589$$aForschungszentrum Jülich$$b0$$kFZJ
000903865 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b2$$kFZJ
000903865 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903865 9141_ $$y2021
000903865 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903865 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000903865 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000903865 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2019$$d2021-01-30
000903865 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903865 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS CATAL : 2019$$d2021-01-30
000903865 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903865 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903865 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000903865 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903865 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903865 920__ $$lyes
000903865 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000903865 9801_ $$aFullTexts
000903865 980__ $$ajournal
000903865 980__ $$aVDB
000903865 980__ $$aI:(DE-Juel1)IEK-13-20190226
000903865 980__ $$aUNRESTRICTED
000903865 980__ $$aAPC
000903865 981__ $$aI:(DE-Juel1)IET-3-20190226