000903869 001__ 903869
000903869 005__ 20240712113149.0
000903869 0247_ $$2doi$$a10.3390/membranes11120985
000903869 0247_ $$2Handle$$a2128/29547
000903869 0247_ $$2altmetric$$aaltmetric:119503803
000903869 0247_ $$2pmid$$a34940486
000903869 0247_ $$2WOS$$aWOS:000736330600001
000903869 037__ $$aFZJ-2021-05502
000903869 082__ $$a570
000903869 1001_ $$00000-0002-4552-062X$$aReshetenko, Tatyana V.$$b0$$eCorresponding author
000903869 245__ $$aImpedance Spectroscopy Measurements of Ionomer Film Oxygen Transport Resistivity in Operating Low-Pt PEM Fuel Cell
000903869 260__ $$aBasel$$bMDPI$$c2021
000903869 3367_ $$2DRIVER$$aarticle
000903869 3367_ $$2DataCite$$aOutput Types/Journal article
000903869 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640015030_28371
000903869 3367_ $$2BibTeX$$aARTICLE
000903869 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903869 3367_ $$00$$2EndNote$$aJournal Article
000903869 520__ $$aThe work presents a model for local impedance of low-Pt proton exchange membrane fuel cells (PEMFCs), including cathode pore size distribution and O2 transport along pores and through a thin ionomer film covering Pt/C agglomerates. The model was applied to fit the local impedance spectra of low-Pt fuel cells operated at current densities from 100 to 800 mA cm−2 and recorded by a segmented cell system. Assuming an ionomer film thickness of 10 nm, the fitting returned the product of the dimensionless Henry’s constant of oxygen dissolution in ionomer KH by the oxygen diffusivity DN in the ionomer (KHDN). This parameter allowed us to determine the fundamental O2 transport resistivity RN through the ionomer film in the working electrode under conditions relevant to the realistic operation of PEMFCs. The results show that variation of the operating current density does not affect RN, which remains nearly constant at ≃0.4 s cm−1.
000903869 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903869 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903869 7001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b1$$eCorresponding author
000903869 773__ $$0PERI:(DE-600)2614641-1$$a10.3390/membranes11120985$$gVol. 11, no. 12, p. 985 -$$n12$$p985 -$$tMembranes$$v11$$x2077-0375$$y2021
000903869 8564_ $$uhttps://juser.fz-juelich.de/record/903869/files/Impedance%20Spectroscopy%20Measurements%20of%20Ionomer%20Film%20Oxygen%20Transport%20Resistivity%20in%20Operating%20Low-Pt%20PEM%20Fuel%20Cell.png$$yRestricted
000903869 8564_ $$uhttps://juser.fz-juelich.de/record/903869/files/Impedance%20Spectroscopy%20Measurements%20of%20Ionomer%20Film%20Oxygen%20Transport%20Resistivity%20in%20Operating%20Low-Pt%20PEM%20Fuel%20Cell.gif?subformat=icon$$xicon$$yRestricted
000903869 8564_ $$uhttps://juser.fz-juelich.de/record/903869/files/Impedance%20Spectroscopy%20Measurements%20of%20Ionomer%20Film%20Oxygen%20Transport%20Resistivity%20in%20Operating%20Low-Pt%20PEM%20Fuel%20Cell.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000903869 8564_ $$uhttps://juser.fz-juelich.de/record/903869/files/Impedance%20Spectroscopy%20Measurements%20of%20Ionomer%20Film%20Oxygen%20Transport%20Resistivity%20in%20Operating%20Low-Pt%20PEM%20Fuel%20Cell.jpg?subformat=icon-180$$xicon-180$$yRestricted
000903869 8564_ $$uhttps://juser.fz-juelich.de/record/903869/files/Impedance%20Spectroscopy%20Measurements%20of%20Ionomer%20Film%20Oxygen%20Transport%20Resistivity%20in%20Operating%20Low-Pt%20PEM%20Fuel%20Cell.jpg?subformat=icon-640$$xicon-640$$yRestricted
000903869 8564_ $$uhttps://juser.fz-juelich.de/record/903869/files/membranes-11-00985.pdf$$yOpenAccess
000903869 909CO $$ooai:juser.fz-juelich.de:903869$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b1$$kFZJ
000903869 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903869 9141_ $$y2021
000903869 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000903869 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903869 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903869 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-02
000903869 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000903869 920__ $$lyes
000903869 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000903869 9801_ $$aFullTexts
000903869 980__ $$ajournal
000903869 980__ $$aVDB
000903869 980__ $$aUNRESTRICTED
000903869 980__ $$aI:(DE-Juel1)IEK-13-20190226
000903869 981__ $$aI:(DE-Juel1)IET-3-20190226