001     903909
005     20230123110546.0
024 7 _ |a 10.1109/TMAG.2021.3082324
|2 doi
024 7 _ |a 0018-9464
|2 ISSN
024 7 _ |a 1941-0069
|2 ISSN
024 7 _ |a 2128/30599
|2 Handle
024 7 _ |a WOS:000745538100062
|2 WOS
037 _ _ |a FZJ-2021-05533
082 _ _ |a 620
100 1 _ |a Ovsianikov, Aleksandr
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Breaking the magnetic symmetry by reorientation transition near 50 K in multiferroic magnetocaloric HoFeO3
260 _ _ |a New York, NY
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643287645_30285
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Using the new polarized neutron diffraction (PND) setup at MLZ the spin reorientation transition in the magnetocaloric orthoferrite HoFeO3 was studied at different wavelength. The various experiments provided reproducible results demonstrating high reliability of the used setup. We show that during the phase transition at TSR=53 K in an external magnetic field applied along crystal c-axis, the ordered magnetic moment of the Fe sublattice rotates from the crystallographic direction b to a not just in the ab plane, but through z axis. This means that the applied field breaks the orthorhombic symmetry allowing some magnetization parallel to z within a short temperature region. Interestingly, this is the same temperature region where large magnetocaloric effect for HoFeO3 was previously reported. A general model of the magnetic structure of HoFeO3, unconstrained by the orthorhombic symmetry, would allow the magnitudes and directions of the moments on each of the 8 magnetic sublattices in the unit cell to be independent of one-another, leading to 24 independent magnetic parameters. PND measurements were used to determine the absolute sign of the Dzyaloshinskii-Moriya interaction (DMI) in the ab plane for the Fe magnetic sublattice at 65 K. DMI plays an important role in the energy balance of the system.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e POLI: Polarized hot neutron diffractometer
|f SR9a
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)POLI-HEIDI-20140101
|5 EXP:(DE-MLZ)POLI-HEIDI-20140101
|6 EXP:(DE-MLZ)SR9a-20140101
|x 0
700 1 _ |a Thoma, Henrik
|0 P:(DE-Juel1)176326
|b 1
|u fzj
700 1 _ |a Usmanov, Oleg
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brown, Penelope Jane
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chatterji, Tapan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sazonov, Andrew
|0 P:(DE-Juel1)164291
|b 5
700 1 _ |a Barilo, Sergey
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Peters, Lars
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hutanu, Vladimir
|0 P:(DE-Juel1)164298
|b 8
|u fzj
773 _ _ |a 10.1109/TMAG.2021.3082324
|g p. 1 - 1
|0 PERI:(DE-600)2025397-7
|n 2
|p 2500105
|t IEEE transactions on magnetics
|v 58
|y 2022
|x 0018-9464
856 4 _ |u https://juser.fz-juelich.de/record/903909/files/PR_version.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903909
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)164298
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)164298
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2022
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T MAGN : 2021
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21