000903920 001__ 903920
000903920 005__ 20240712112959.0
000903920 0247_ $$2doi$$a10.1038/s41560-021-00953-z
000903920 0247_ $$2Handle$$a2128/30811
000903920 0247_ $$2altmetric$$aaltmetric:119280133
000903920 0247_ $$2WOS$$aWOS:000730887700002
000903920 037__ $$aFZJ-2021-05544
000903920 082__ $$a330
000903920 1001_ $$0P:(DE-Juel1)187394$$aZhao, Yicheng$$b0$$eCorresponding author
000903920 245__ $$aA bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures
000903920 260__ $$aLondon$$bNature Publishing Group$$c2022
000903920 3367_ $$2DRIVER$$aarticle
000903920 3367_ $$2DataCite$$aOutput Types/Journal article
000903920 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646142273_3718
000903920 3367_ $$2BibTeX$$aARTICLE
000903920 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903920 3367_ $$00$$2EndNote$$aJournal Article
000903920 520__ $$aThe long-term stability of perovskite solar cells remains a challenge. Both the perovskite layer and the device architecture need to endure long-term operation. Here we first use a self-constructed high-throughput screening platform to find perovskite compositions stable under heat and light. Then, we use the most stable perovskite composition to investigate the stability of contact layers in solar cells. We report on the thermal degradation mechanism of transition metal oxide contact (for example, Ta-WOx/NiOx) and propose a bilayer structure consisting of acid-doped polymer stacked on dopant-free polymer as an alternative. The dopant-free polymer provides an acid barrier between the perovskite and the acid-doped polymer. The bilayer structure exhibits stable ohmic contact at elevated temperatures and buffers iodine vapours. The unencapsulated device based on the bilayer contact (with a MgF2 capping layer) retains 99% of its peak efficiency after 1,450 h of continuous operation at 65 °C in a N2 atmosphere under metal-halide lamps. The device also shows negligible hysteresis during the entire ageing period.
000903920 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000903920 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x1
000903920 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903920 7001_ $$00000-0002-6974-410X$$aHeumueller, Thomas$$b1
000903920 7001_ $$0P:(DE-HGF)0$$aZhang, Jiyun$$b2
000903920 7001_ $$0P:(DE-HGF)0$$aLuo, Junsheng$$b3
000903920 7001_ $$0P:(DE-Juel1)191088$$aKasian, Olga$$b4$$ufzj
000903920 7001_ $$0P:(DE-Juel1)180636$$aLangner, Stefan$$b5
000903920 7001_ $$0P:(DE-HGF)0$$aKupfer, Christian$$b6
000903920 7001_ $$00000-0002-4007-080X$$aLiu, Bowen$$b7
000903920 7001_ $$aZhong, Yu$$b8
000903920 7001_ $$00000-0001-7373-2390$$aElia, Jack$$b9
000903920 7001_ $$0P:(DE-HGF)0$$aOsvet, Andres$$b10
000903920 7001_ $$aWu, Jianchang$$b11
000903920 7001_ $$0P:(DE-Juel1)143659$$aLiu, Chao$$b12
000903920 7001_ $$0P:(DE-HGF)0$$aWan, Zhongquan$$b13
000903920 7001_ $$0P:(DE-HGF)0$$aJia, Chunyang$$b14
000903920 7001_ $$0P:(DE-Juel1)180778$$aLi, Ning$$b15
000903920 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b16
000903920 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b17$$eCorresponding author
000903920 773__ $$0PERI:(DE-600)2847369-3$$a10.1038/s41560-021-00953-z$$p144-152$$tNature energy$$v7$$x2058-7546$$y2022
000903920 8564_ $$uhttps://juser.fz-juelich.de/record/903920/files/s41560-021-00953-z.pdf$$yRestricted
000903920 8564_ $$uhttps://juser.fz-juelich.de/record/903920/files/Postprint%20-%20Zhao%20-%20%20Ultrastable%20PSK%20solar%20cell.docx$$yOpenAccess
000903920 909CO $$ooai:juser.fz-juelich.de:903920$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187394$$aForschungszentrum Jülich$$b0$$kFZJ
000903920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191088$$aForschungszentrum Jülich$$b4$$kFZJ
000903920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180778$$aForschungszentrum Jülich$$b15$$kFZJ
000903920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b16$$kFZJ
000903920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b17$$kFZJ
000903920 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000903920 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1
000903920 9141_ $$y2022
000903920 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000903920 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903920 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000903920 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ENERGY : 2021$$d2022-11-15
000903920 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000903920 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000903920 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000903920 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000903920 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000903920 920__ $$lyes
000903920 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000903920 9801_ $$aFullTexts
000903920 980__ $$ajournal
000903920 980__ $$aVDB
000903920 980__ $$aUNRESTRICTED
000903920 980__ $$aI:(DE-Juel1)IEK-11-20140314
000903920 981__ $$aI:(DE-Juel1)IET-2-20140314