001     903920
005     20240712112959.0
024 7 _ |a 10.1038/s41560-021-00953-z
|2 doi
024 7 _ |a 2128/30811
|2 Handle
024 7 _ |a altmetric:119280133
|2 altmetric
024 7 _ |a WOS:000730887700002
|2 WOS
037 _ _ |a FZJ-2021-05544
082 _ _ |a 330
100 1 _ |a Zhao, Yicheng
|0 P:(DE-Juel1)187394
|b 0
|e Corresponding author
245 _ _ |a A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures
260 _ _ |a London
|c 2022
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1646142273_3718
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The long-term stability of perovskite solar cells remains a challenge. Both the perovskite layer and the device architecture need to endure long-term operation. Here we first use a self-constructed high-throughput screening platform to find perovskite compositions stable under heat and light. Then, we use the most stable perovskite composition to investigate the stability of contact layers in solar cells. We report on the thermal degradation mechanism of transition metal oxide contact (for example, Ta-WOx/NiOx) and propose a bilayer structure consisting of acid-doped polymer stacked on dopant-free polymer as an alternative. The dopant-free polymer provides an acid barrier between the perovskite and the acid-doped polymer. The bilayer structure exhibits stable ohmic contact at elevated temperatures and buffers iodine vapours. The unencapsulated device based on the bilayer contact (with a MgF2 capping layer) retains 99% of its peak efficiency after 1,450 h of continuous operation at 65 °C in a N2 atmosphere under metal-halide lamps. The device also shows negligible hysteresis during the entire ageing period.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Heumueller, Thomas
|0 0000-0002-6974-410X
|b 1
700 1 _ |a Zhang, Jiyun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Luo, Junsheng
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kasian, Olga
|0 P:(DE-Juel1)191088
|b 4
|u fzj
700 1 _ |a Langner, Stefan
|0 P:(DE-Juel1)180636
|b 5
700 1 _ |a Kupfer, Christian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Liu, Bowen
|0 0000-0002-4007-080X
|b 7
700 1 _ |a Zhong, Yu
|b 8
700 1 _ |a Elia, Jack
|0 0000-0001-7373-2390
|b 9
700 1 _ |a Osvet, Andres
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wu, Jianchang
|b 11
700 1 _ |a Liu, Chao
|0 P:(DE-Juel1)143659
|b 12
700 1 _ |a Wan, Zhongquan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Jia, Chunyang
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Li, Ning
|0 P:(DE-Juel1)180778
|b 15
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 16
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 17
|e Corresponding author
773 _ _ |a 10.1038/s41560-021-00953-z
|0 PERI:(DE-600)2847369-3
|p 144-152
|t Nature energy
|v 7
|y 2022
|x 2058-7546
856 4 _ |u https://juser.fz-juelich.de/record/903920/files/s41560-021-00953-z.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/903920/files/Postprint%20-%20Zhao%20-%20%20Ultrastable%20PSK%20solar%20cell.docx
909 C O |o oai:juser.fz-juelich.de:903920
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)180778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 1
914 1 _ |y 2022
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT ENERGY : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21