001     903934
005     20220131120411.0
024 7 _ |a 10.1016/j.neuroimage.2020.117194
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 2128/29592
|2 Handle
024 7 _ |a altmetric:86396058
|2 altmetric
024 7 _ |a pmid:32711065
|2 pmid
024 7 _ |a WOS:000600795000059
|2 WOS
037 _ _ |a FZJ-2021-05548
082 _ _ |a 610
100 1 _ |a Pamplona, Gustavo S. P.
|0 0000-0002-0278-203X
|b 0
|e Corresponding author
245 _ _ |a Network-based fMRI-neurofeedback training of sustained attention
260 _ _ |a Orlando, Fla.
|c 2020
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640184867_13627
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The brain regions supporting sustained attention (sustained attention network; SAN) and mind-wandering (default-mode network; DMN) have been extensively studied. Nevertheless, this knowledge has not yet been translated into advanced brain-based attention training protocols. Here, we used network-based real-time functional magnetic resonance imaging (fMRI) to provide healthy individuals with information about current activity levels in SAN and DMN. Specifically, 15 participants trained to control the difference between SAN and DMN hemodynamic activity and completed behavioral attention tests before and after neurofeedback training. Through training, participants improved controlling the differential SAN-DMN feedback signal, which was accomplished mainly through deactivating DMN. After training, participants were able to apply learned self-regulation of the differential feedback signal even when feedback was no longer available (i.e., during transfer runs). The neurofeedback group improved in sustained attention after training, although this improvement was temporally limited and rarely exceeded mere practice effects that were controlled by a test-retest behavioral control group. The learned self-regulation and the behavioral outcomes suggest that neurofeedback training of differential SAN and DMN activity has the potential to become a non-invasive and non-pharmacological tool to enhance attention and mitigate specific attention deficits.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Heldner, Jennifer
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 2
700 1 _ |a Koush, Yury
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Michels, Lars
|0 0000-0003-3750-1100
|b 4
700 1 _ |a Ionta, Silvio
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Scharnowski, Frank
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Salmon, Carlos E. G.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.neuroimage.2020.117194
|g Vol. 221, p. 117194 -
|0 PERI:(DE-600)1471418-8
|p 117194 -
|t NeuroImage
|v 221
|y 2020
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/903934/files/1-s2.0-S1053811920306807-main%2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903934
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131693
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21