000903942 001__ 903942
000903942 005__ 20230123110546.0
000903942 0247_ $$2doi$$a10.1016/j.neuroimage.2021.118842
000903942 0247_ $$2ISSN$$a1053-8119
000903942 0247_ $$2ISSN$$a1095-9572
000903942 0247_ $$2Handle$$a2128/30106
000903942 0247_ $$2altmetric$$aaltmetric:120055407
000903942 0247_ $$2pmid$$apmid:34942366
000903942 0247_ $$2WOS$$aWOS:000736962400011
000903942 037__ $$aFZJ-2021-05550
000903942 082__ $$a610
000903942 1001_ $$0P:(DE-Juel1)180330$$aEndepols, Heike$$b0
000903942 245__ $$aImaging of cerebral tryptophan metabolism using 7-[18F]FTrp-PET in a unilateral Parkinsonian rat model
000903942 260__ $$aOrlando, Fla.$$bAcademic Press$$c2022
000903942 3367_ $$2DRIVER$$aarticle
000903942 3367_ $$2DataCite$$aOutput Types/Journal article
000903942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641912189_26115
000903942 3367_ $$2BibTeX$$aARTICLE
000903942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903942 3367_ $$00$$2EndNote$$aJournal Article
000903942 520__ $$aDegradation products of the essential amino acid tryptophan (Trp) are important signaling molecules in the mammalian brain. Trp is metabolized either through the kynurenine pathway or enters serotonin and melatonin syntheses. The aim of the present work was to examine the potential of the novel PET tracer 7-[18F]fluorotryptophan ([18F]FTrp) to visualize all three pathways in a unilateral 6-OHDA rat model. [18F]FDOPA-PET scans were performed in nine 6-OHDA-injected and six sham-operated rats to assess unilateral dopamine depletion severity four weeks after lesion placement. Afterwards, 7-[18F]FTrp-PET scans were conducted at different timepoints up to seven months after 6-OHDA injection. In addition, three 6-OHDA-injected rats and one healthy control were examined for neuroinflammation using [18F]DAA1106-PET. 7-[18F]FTrp-PET showed significantly increased tracer uptake at the 6-OHDA injection site which was negatively correlated to time after lesion placement. Accumulation of [18F]DAA1106 at the injection site was increased as well, suggesting that 7-[18F]FTrp uptake in this region may reflect kynurenine pathway activity associated with inflammation. Bilaterally in the dorsal hippocampus, 7-[18F]FTrp uptake was significantly decreased and was inversely correlated to dopamine depletion severity, indicating that it reflects reduced serotonin synthesis. Finally, 7-[18F]FTrp uptake in the pineal gland was significantly increased in relation with dopamine depletion severity, providing evidence that melatonin synthesis is increased in the 6-OHDA rat model. We conclude that 7-[18F]FTrp is able to detect alterations in both serotonin/melatonin and kynurenine metabolic pathways, and can be applied to visualize pathologic changes related to neurodegenerative processes.
000903942 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000903942 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903942 7001_ $$0P:(DE-Juel1)185610$$aZlatopolskiy, Boris$$b1
000903942 7001_ $$0P:(DE-Juel1)166483$$aZischler, Johannes$$b2
000903942 7001_ $$0P:(DE-HGF)0$$aAlavinejad, Nazanin$$b3
000903942 7001_ $$0P:(DE-HGF)0$$aApetz, Nadine$$b4
000903942 7001_ $$0P:(DE-Juel1)177630$$aVus, Stefanie$$b5
000903942 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b6
000903942 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b7$$eCorresponding author
000903942 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2021.118842$$gp. 118842 -$$p118842 -$$tNeuroImage$$v247$$x1053-8119$$y2022
000903942 8564_ $$uhttps://juser.fz-juelich.de/record/903942/files/Invoice_OAD0000175364.pdf
000903942 8564_ $$uhttps://juser.fz-juelich.de/record/903942/files/1-s2.0-S1053811921011137-main.pdf$$yOpenAccess
000903942 8767_ $$8OAD0000175364$$92021-12-22$$d2022-01-04$$eAPC$$jZahlung erfolgt$$z1200174980
000903942 909CO $$ooai:juser.fz-juelich.de:903942$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000903942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b0$$kFZJ
000903942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185610$$aForschungszentrum Jülich$$b1$$kFZJ
000903942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177630$$aForschungszentrum Jülich$$b5$$kFZJ
000903942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b6$$kFZJ
000903942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b7$$kFZJ
000903942 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000903942 9141_ $$y2022
000903942 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000903942 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000903942 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000903942 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000903942 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903942 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000903942 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903942 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000903942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2021$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:29:23Z
000903942 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-27T20:29:23Z
000903942 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-27T20:29:23Z
000903942 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000903942 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2021$$d2022-11-12
000903942 920__ $$lyes
000903942 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000903942 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
000903942 980__ $$ajournal
000903942 980__ $$aVDB
000903942 980__ $$aUNRESTRICTED
000903942 980__ $$aI:(DE-Juel1)INM-5-20090406
000903942 980__ $$aI:(DE-Juel1)INM-2-20090406
000903942 980__ $$aAPC
000903942 9801_ $$aAPC
000903942 9801_ $$aFullTexts