000903986 001__ 903986
000903986 005__ 20240725202006.0
000903986 0247_ $$2doi$$a10.1016/j.apmt.2021.101134
000903986 0247_ $$2ISSN$$a2352-9407
000903986 0247_ $$2ISSN$$a2352-9415
000903986 0247_ $$2Handle$$a2128/30078
000903986 0247_ $$2altmetric$$aaltmetric:112396150
000903986 0247_ $$2WOS$$aWOS:000697464800001
000903986 037__ $$aFZJ-2021-05556
000903986 1001_ $$0P:(DE-Juel1)180434$$aBöhm, Daniel$$b0$$ufzj
000903986 245__ $$aHighly conductive titania supported iridium oxide nanoparticles with low overall iridium density as OER catalyst for large-scale PEM electrolysis
000903986 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000903986 3367_ $$2DRIVER$$aarticle
000903986 3367_ $$2DataCite$$aOutput Types/Journal article
000903986 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884585_26965
000903986 3367_ $$2BibTeX$$aARTICLE
000903986 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903986 3367_ $$00$$2EndNote$$aJournal Article
000903986 520__ $$aTo enable future large-scale generation of hydrogen via proton exchange membrane (PEM) electrolysis, utilization of scarce iridium-based catalysts required for the oxygen evolution reaction (OER) has to be significantly lowered. To address this question, the facile synthesis of a highly active TiO2 supported iridium oxide based OER catalyst with reduced noble metal content and an Ir-density of the catalyst powder as low as 0.05–0.08 gIr cm-3 is described in this work. A high surface area corrosion-resistant titania catalyst support homogeneously coated with a 1-2 nm thin layer of amorphous IrOOHx is oxidized in molten NaNO3 between 350-375°C. This procedure allows for a controllable phase transformation and crystallization to form a layer of interconnected IrO2 nanoparticles of ≈2 nm on the surface of the TiO2 support. The increase in crystallinity is thereby accompanied by a significant increase in conductivity of up to 11 S cm-1 for a 30 wt% Ir loaded catalyst. Oxidized samples further display a significantly increased stability with less detectable Ir dissolution under OER conditions. With a mass-based activity of 59 A g-1 at an overpotential of 300 mV, the electrocatalytic activity is maintained at the level of the highly active amorphous IrOOHx phase used as precursor and outperforms it at higher current densities through the increased conductivity. MEA measurements with catalyst loadings of 0.2-0.3 mg cm-2 further confirm the high catalytic activity and initial stability at industrially relevant current densities. The introduced synthesis approach therefore shows a path for the fabrication of novel highly active and atom-efficient oxide supported catalysts with complex nanostructures and thin homogenous nanoparticle coatings that allows a future large-scale application of PEM electrolysis technology without restrictions by the natural abundance of iridium.
000903986 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903986 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903986 7001_ $$0P:(DE-HGF)0$$aBeetz, Michael$$b1
000903986 7001_ $$0P:(DE-HGF)0$$aGebauer, Christian$$b2
000903986 7001_ $$0P:(DE-HGF)0$$aBernt, Maximilian$$b3
000903986 7001_ $$0P:(DE-HGF)0$$aSchröter, Jonas$$b4
000903986 7001_ $$0P:(DE-HGF)0$$aKornherr, Matthias$$b5
000903986 7001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b6$$ufzj
000903986 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b7$$eCorresponding author
000903986 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b8$$ufzj
000903986 773__ $$0PERI:(DE-600)2833442-5$$a10.1016/j.apmt.2021.101134$$gVol. 24, p. 101134 -$$p101134 -$$tApplied materials today$$v24$$x2352-9407$$y2021
000903986 8564_ $$uhttps://juser.fz-juelich.de/record/903986/files/Boehm_ApplMaterToday.pdf$$yOpenAccess
000903986 909CO $$ooai:juser.fz-juelich.de:903986$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000903986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180434$$aForschungszentrum Jülich$$b0$$kFZJ
000903986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b6$$kFZJ
000903986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b8$$kFZJ
000903986 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903986 9141_ $$y2021
000903986 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000903986 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000903986 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL MATER TODAY : 2019$$d2021-01-28
000903986 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL MATER TODAY : 2019$$d2021-01-28
000903986 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000903986 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000903986 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903986 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000903986 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000903986 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000903986 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000903986 980__ $$ajournal
000903986 980__ $$aVDB
000903986 980__ $$aI:(DE-Juel1)IEK-1-20101013
000903986 980__ $$aUNRESTRICTED
000903986 9801_ $$aFullTexts
000903986 981__ $$aI:(DE-Juel1)IMD-2-20101013