000903987 001__ 903987
000903987 005__ 20240711085652.0
000903987 0247_ $$2doi$$a10.1016/j.cattod.2019.12.020
000903987 0247_ $$2ISSN$$a0920-5861
000903987 0247_ $$2ISSN$$a1873-4308
000903987 0247_ $$2Handle$$a2128/30834
000903987 0247_ $$2altmetric$$aaltmetric:95525381
000903987 0247_ $$2WOS$$aWOS:000598224600006
000903987 037__ $$aFZJ-2021-05557
000903987 082__ $$a540
000903987 1001_ $$00000-0002-2812-5783$$aCarbajo, J.$$b0$$eCorresponding author
000903987 245__ $$aThe influence of the catalyst on the CO formation during catalytic wet peroxide oxidation process
000903987 260__ $$aAmsterdam$$bElsevier$$c2021
000903987 3367_ $$2DRIVER$$aarticle
000903987 3367_ $$2DataCite$$aOutput Types/Journal article
000903987 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646397358_24387
000903987 3367_ $$2BibTeX$$aARTICLE
000903987 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903987 3367_ $$00$$2EndNote$$aJournal Article
000903987 520__ $$aHerein, the formation of carbon monoxide as a harmful product upon the Catalytic Wet Peroxide Oxidation process is studied in presence of different solid catalysts: an iron supported activated carbon catalyst, a metal-free catalyst based on Graphene Nanoplatelets, and 1.6 wt.% Fe containing Cr2AlC MAX phase catalyst. The CWPO performance and the evolution of the gas effluent have been compared to that obtained in a conventional Fenton process.Carbon monoxide yield released was significantly lower in Catalytic Wet Peroxide Oxidation process in relation to that obtained in the Fenton process, where CO concentration reaches a maximum of 6651 mg/Nm3. By contrast, in presence of activated carbon-Fe catalyst and, notably, Graphene Nanoplatelets and Cr2AlC MAX phase catalysts, a more progressive phenol and aromatics intermediates oxidation resulted in a much lower CO maximum concentration in the gas phase at the exit of the reactor of 2454 mg/Nm3, 170 mg/Nm3 and 187 mg/Nm3, respectively.Hence, when compared to the homogeneous Fenton oxidation, Catalytic Wet Peroxide Oxidation process results be a more sustainable treatment for high-loaded phenolic wastewaters by decreasing the hazardous CO gaseous emissions avoiding this way a secondary pollution during the oxidation process.
000903987 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000903987 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903987 7001_ $$00000-0002-7255-2547$$aQuintanilla, A.$$b1
000903987 7001_ $$00000-0001-5956-3148$$aGarcia-Costa, A. L.$$b2
000903987 7001_ $$0P:(DE-Juel1)162271$$aGonzález-Julián, J.$$b3
000903987 7001_ $$00000-0001-6668-6920$$aBelmonte, M.$$b4
000903987 7001_ $$0P:(DE-HGF)0$$aMiranzo, P.$$b5
000903987 7001_ $$0P:(DE-HGF)0$$aOsendi, M. I.$$b6
000903987 7001_ $$0P:(DE-HGF)0$$aCasas, J. A.$$b7
000903987 773__ $$0PERI:(DE-600)2012626-8$$a10.1016/j.cattod.2019.12.020$$gVol. 361, p. 30 - 36$$p30 - 36$$tCatalysis today$$v361$$x0920-5861$$y2021
000903987 8564_ $$uhttps://juser.fz-juelich.de/record/903987/files/The%20influence%20of%20the%20catalyst%20on%20the%20CO%20formation%20during%20catalytic%20wet%20peroxide%20oxidation%20process.pdf$$yOpenAccess
000903987 909CO $$ooai:juser.fz-juelich.de:903987$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903987 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000903987 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000903987 9141_ $$y2022
000903987 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCATAL TODAY : 2019$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903987 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCATAL TODAY : 2019$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000903987 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000903987 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000903987 9801_ $$aFullTexts
000903987 980__ $$ajournal
000903987 980__ $$aVDB
000903987 980__ $$aUNRESTRICTED
000903987 980__ $$aI:(DE-Juel1)IEK-1-20101013
000903987 981__ $$aI:(DE-Juel1)IMD-2-20101013