In-situ formation of 2D-TiC_x in Cu-Ti₂AlC composites: an interface 1 reaction study 2 K. Dash¹*, A. Dash² 3 4 ¹ Dept. of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras 5 Chennai-600036, India 6 ² Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research: Materials 7 Synthesis and Processing (IEK-1), 52425 Jülich, Germany 8 9 **Abstract** 10 We have explored to fabricate Cu based Ti₂AlC composite focusing on the processing method 11 12 and the reaction which takes place at the matrix-reinforcement interface to yield 2D TiC_x. In due course of consolidation of Cu-Ti₂AlC; the formation of 2D TiC_x via the reaction between 13 Cu and Ti₂AlC by forming solid solution between CuAl_x was facilitated. This reaction has been 14 15 elaborated and analyzed in the light of corroborated results. Keywords: Microstructure; Powder Technology; Ti₂AlC; 2D TiC_x; Interface; Reaction 16 17 Email ID: khushbudash@gmail.com 1. Introduction 18 19 MAX phases are a class of materials which are layered ceramics, with a generic formula of 20 21 $M_{n+1}AX_n$ [1]. In this formula M stands for an early transition metal, while A represents an 22 element from the IIIA or IVA groups, and X is representative of carbon and/or nitrogen [2]. 23 Depending on the value of n index, the MAX phases are divided to three general categories, 24 namely 211, 312 and 413 groups. $M_{n+1}AX_n$ phases (with n = 1-3) form a wide class of nano-25 laminated ternary carbides or nitrides, with a hexagonal crystal structure. MAX phases have 26 equivalent or superior electrical and thermal conductivity as compared to the corresponding metallic element M [3]. 27 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Copper based metal matrix composites (MMC) are a class of materials which combine the electrical properties of Cu and the mechanical properties of the reinforcements like ceramics particles. MAX phase-based Cu MMC offers the possibility of a tough material without a profound loss in electrical conductivity. Peng et al. showed that Ti₃AlC₂ reinforced Cu exhibits a lower electrical conductivity but a much higher flexural strength without the loss in fracture toughness [4]. Cu is also used as an interphase to stop the reaction between Al and Ti₃AlC₂ for MMC applications [5]. Hence Cu is a suitable candidate for the matrix with Ti-Al based MAX phase as the reinforcement. (Ti_xCu_{1-x})₃(Al,Cu)C₂ MAX phase solid solution was synthesized by sintering at 760 °C by compacting Ti₃AlC₂-40 vol.% Cu composite particles mixed by mechanical milling ^[6]. The reaction between Ti₃AlC₂ and Cu is elaborated by some research groups showing that when Cu enters the Ti₃AlC₂ crystal structure it yields a defective Ti₃AlC₂ which is TiC_{0.67} with layers of Cu-Al alloy within a Ti₃AlC₂ grain ^[7]. The reports till date have emerged from high amount of Ti₃AlC₂ phase being added ^[7–11], but in the present work we have used only 1 and 3 vol.% of Ti₂AlC phase to establish that in-situ 2D TiC_x reinforced Cu composites can be fabricated with certain desirable properties by tailoring the processing conditions. The properties of 2D materials are typically superior to their bulk counterparts and this motivation led to numerous researches in graphene and subsequently MXene [12-14]. MXenes are 2D structures composed of only M and X elements and is synthesized from MAX phases by acid etching of the A element [14]. The schematic representation in Fig. 1 represents the concept behind the in-situ formation of 2D TiC_x taking place in the Cu matrix reinforced with MAX phase in this experiment. The idea of this experiment was to choose a matrix which could form a solid solution with the A element of the MAX phase. This solid solution formation would deplete the MAX phase of A element thereby creating MX_n layers. The underlying principle to solid solution formation of A element with the matrix element was the eutectic reaction of Al and Cu thereby providing enough time for Al atoms to diffuse out of the MAX phase and react with the Cu matrix. This concept can be extended to important systems; the eutectic solid solution formation would provide additional strengthening to the material. The gradient kind of microstructure distributed around with solid solution formation, 2D TiC_x and Cu matrix provides ample scope to engineer the material to obtain desirable properties. #### 2. Materials and Methods Copper (Alfa Aesar, 325 mesh) was blended with 1 and 3 vol. % Ti₂AlC (synthesized from elemental precursors ^{[15][16]}) agglomerate size ~40 µm) powder followed by uniaxial cold compaction (700 MPa) and sintering in vacuum furnace (Thermal Technologies, USA) at 900°C for 2 h. The consolidated specimens were studied for microstructural characteristics and phase distribution using field emission scanning electron microscopy (FEI Quanta) and electron probe micro-analyzer (EPMA). Transmission electron microscopy (TEM) (FEI T20) has been performed to study the interaction of Cu with the Ti₂AlC phase. #### 3. Results and discussion - 73 The X-ray diffraction pattern of Ti₂AlC powder has been shown in Fig. 2(a) which contains - 74 Ti₂AlC and traces of Ti₃AlC₂. Fig. 2(b) shows the Ti₂AlC powder with an inset of higher - 75 magnification, the layers of Ti₂AlC stacked together. The microstructure of the sintered specimens reveals near-uniform distribution of Ti₂AlC in copper matrix (Fig. 2(c)). Three phases by contrast which indicates Cu, CuAl_x partial solid solution and Ti₂AlC particles can be seen. Ti₂AlC is present on the grain boundaries and has pinning effect on the Cu matrix, in Fig. 2(d). Formation of sheet like loose ends at the grain boundary regions labelled by arrows in Fig. 2(d) suggest structure like 2D sheets. Fig. 2(e) reveals sub layer structure in the Ti₂AlC particle. Zhang et al. ^[7] suggested that Cu and Ti₃AlC₂ reacts above 850°C to form a layer at the interface. Molten Cu triggers the exfoliation of Ti₃AlC₂ via its decomposition yielding TiC_{0.67} layers and Cu-Al alloy layers within Ti₃AlC₂ grains^[10]. In Fig.2(d) well-defined grain boundaries visible indicate complete wetting of Cu by Ti₂AlC and vice-versa^[17]. The layer-like morphology of intergranular phase shown with arrows renders hindrance to the crack propagation in the material, whereas the particle-like morphology would contribute to resistance in plastic deformation^[18]. Fig. 3 shows that the Al in the Ti₂AlC phase has interacted with the Cu matrix to form a partial solid solution. The core of the particle shows lower concentration (atomic%) of Al in accordance with the Al content in Ti₂AlC phase, as it has interacted with copper and has diffused into the matrix region. The periphery of the interphase region is Al rich indicating the onset of formation of a Cu-Al solid solution. It is observed that Cu has entered the core of Ti₂AlC phase which proves the reaction taking place between Cu and Ti₂AlC phase result in a partial Cu-Al solid solution. The Cu map indicates the inward diffusion of Cu from the matrix into the Ti₂AlC particle substituting in the Ti atomic position as well^[6]. The presence of Cu alters the decomposition temperature of Ti₂AlC, i.e. stability of Ti₂AlC ranges from 1100 to 1200°C, but Cu decreases the stability temperature considerably by reacting with Ti₂AlC at 900°C [7]. The diffusion reaction can be formulated as 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 Cu and Ti₂AlC have been reported to have a good wettability with each other. The deintercalation of Al in MAX phase is most viable as the M-A bond is quite weak. A mild reaction between Cu and Ti₂AlC starts at 850-950°C, the reaction becomes strong above 950°C. Above 1000°C, total decomposition occurs with sub-stoichiometric TiC_x and CuAlx solid solution formation in Cu-Ti₃AlC₂^[7]. Cu-Ti₂AlC composite reveals dislocation tangles in the Cu matrix (Fig.4(a)); as the Ti₂AlC is layered, showing dislocation arrays in Fig. 4(b); inset showing the SAD pattern. The bright field micrographs in Fig.4(c&d) shows two distinct regions of interest. i.e. near the Cu-Ti₂AlC phase interface and away from the interface. The region near the interface exhibits a sub-grain boundary pattern which can be marked as the reaction layer between Cu and Ti₂AlC. In due course Cu has entered the Ti₂AlC phase and formed partial solid solution of Cu-Al (Fig.4(d)). The region farther from the interface shows some precipitates which can be identified by viewing the bright and dark field images (Fig.4(c)). These precipitates denote the formation of solid solution between Cu-Al. Cu was found within the defective Ti₃AlC₂ and a crystallographic relationships ½1210 Ti₃AlC₂ ½111Cu and (0001) Ti₃AlC₂ (111) Cu was established [7]. Single sheets of 2D TiC_x are present in the matrix Fig.4(e&f) showing electronically transparent area of TiC_x of 50 nm in average width. The TiC_x nanosheets can be seen at the grain boundaries of Cu matrix indicating the reaction between Ti₂AlC and Cu. SEM microstructures corroborates; 2D entities being present at the grain boundaries. The SAD pattern of these transparent flakes shows (0002) ring present in them (Fig.4(g)). TiC_x flakes are fragmented during the diffusion reaction process mentioned above, hence show size in nanometer scale. The formation of TiC_x is anticipated to have been taken place partially i.e. localized in the periphery of Ti₂AlC phase regions. This fact could be attributed to the partial solid solution formation between Cu and Al from the Ti₂AlC phase yielding 2D TiC_x. 126 127 ## 4. Conclusion - The fabrication of in-situ 2D TiC_x in the Cu matrix with partial $CuAl_x$ solid solution has been - reported. The microstructure of the composites showed a graded characteristic of three phases - Ti₂AlC in the copper matrix. The reaction between Cu and Ti₂AlC shows that Cu diffuses into - the Ti₂AlC and forms a partial solid solution of CuAl_x and 2D TiC_x. Formation of 2D TiC_x - occurs at grain boundaries. Single flakes of 2D TiC_x were formed at the grain boundaries. # 133 Acknowledgement - 134 The authors would like to thank the infrastructural support from IISc, Bangalore and - Forschungszentrum Jülich. K.D. acknowledges the SERB grant no: PDF/2016/003051. 136 ## 137 References - 138 [1] M. W. Barsoum, *Prog. Solid State Chem.* **2000**, *28*, 201–281. - 139 [2] M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and - Nitrides, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013. - 141 [3] M. W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc. 1996, 79, 1953–1956. - 142 [4] L. Peng, Scr. Mater. **2007**, 56, 729–732. - 143 [5] S. Wang, S. Zhu, J. Cheng, Z. Qiao, J. Yang, W. Liu, *J. Alloys Compd.* **2017**, 690, - 144 612–620. - 145 [6] M. Nechiche, V. Mauchamp, A. Joulain, T. Cabioc, X. Milhet, P. Chartier, S. Dubois, - 146 J. Eur. Ceram. Soc. 2016, 3, 459–466. - 147 [7] J. Zhang, J. Y. Wang, Y. C. Zhou, Acta Mater. 2007, 55, 4381–4390. - 148 [8] M. Ai, H. Zhai, Z. Tang, Interformational Exfoliation of Ti3AlC2 Induced by Cu, - **2007**. - 150 [9] Z. Huang, J. Bonneville, H. Zhai, V. Gauthier-Brunet, S. Dubois, J. Alloys Compd. - **2014**, *602*, 53–57. - 152 [10] J. Zhang, Y. C. Zhou, J. Mater. Res. 2008, 23, 924–932. - 153 [11] X. Huang, Y. Feng, G. Qian, H. Zhao, J. Zhang, X. Zhang, Mater. Sci. Technol. 2018, - *34*, 757–762. - 155 [12] M. Ghidiu, M. R. Lukatskaya, M. Zhao, Y. Gogotsi, M. W. Barsoum, *Nature* 2014, - *516*, 78–81. - 157 [13] B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098. - 158 [14] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, - 159 M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253. - 160 [15] A. Dash, R. Vaßen, O. Guillon, J. Gonzalez-Julian, Nat. Mater. 2019, 18, 465–470. - 161 [16] **N.d.** - 162 [17] A. S. Gornakova, B. B. Straumal, A. N. Nekrasov, A. Kilmametov, N. S. Afonikova, J. - 163 *Mater. Eng. Perform.* **2018**, *27*, 4989–4992. - 164 [18] I. Konyashin, F. Lachmann, B. Ries, A. A. Mazilkin, B. B. Straumal, C. Kübel, L. - Llanes, B. Baretzky, Scr. Mater. **2014**, 83, 17–20. Fig.1 Schematic representation of the in-situ reaction in the process of sintering Fig.2 (a) XRD plot of starting Ti₂AlC powder (b) Microstructure of Ti₂AlC powder, (c-e) microstructure of Cu-1&3 and 3vol.% (high magnification) Ti₂AlC composite respectively Fig.3. Elemental mapping of (a) Al, (b) C, (c) Cu and (d) Ti in Cu-3 vol.% Ti₂AlC MMC Fig.4 TEM micrographs of Cu-3 vol.% Ti_2AlC composite illustrating (a) dislocation in layers (b) layered stacked together (inset SAD pattern) (c) interaction between Cu and Ti_2AlC phase and (d) reaction layer (e) 2D TiC_x at the grain boundary (f) single flakes of 2D TiC_x (g) SAD pattern of 2D TiC_x