Home > Publications database > Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries > print |
001 | 903989 | ||
005 | 20240708132739.0 | ||
024 | 7 | _ | |a 10.1016/j.jpowsour.2021.229508 |2 doi |
024 | 7 | _ | |a 0378-7753 |2 ISSN |
024 | 7 | _ | |a 1873-2755 |2 ISSN |
024 | 7 | _ | |a altmetric:101074882 |2 altmetric |
024 | 7 | _ | |a WOS:000635068900002 |2 WOS |
037 | _ | _ | |a FZJ-2021-05559 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Huang, Chen-Jui |b 0 |
245 | _ | _ | |a Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries |
260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648626231_18236 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Kein Post-print vorhanden. |
520 | _ | _ | |a Sulfurized polyacrylonitrile (S-cPAN) shows an intrinsic shuttle-free capability during cycling with high reversible capacity, making it a promising material for lithium-sulfur (Li–S) battery. However, the lithiation/delithiation mechanism of S-cPAN is still debatable and unclear. In this work, the fundamental reaction mechanism of S-cPAN cathode material is unveiled by in-situ Raman and in-situ X-ray absorption (XAS) spectroscopies. Together with density functional theory calculation, the formation of -N-Sx-N- (x < 4) bridges besides C–S- and –S-S- bonds during the synthesis process is proposed. These sulfur-nitrogen bonds and their strong interactions in the S-cPAN compounds are first observed to account for the proposed solid-solid transformation during the lithiation/delithiation of S-cPAN. Surprisingly, the cPAN backbone is also found to be involved in the charge compensation while the ordered Li2S along the nitrogen edge on the PAN matrix is suggested to form when S-cPAN is fully lithiated. The proposed modified mechanism deciphers the outstanding electrochemical performance of S-cPAN, providing a new pathway for designing high capacity, shuttle-free cathode materials for next-generation Li–S batteries, and a new perspective of sulfur chemistry. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Cheng, Ju-Hsiang |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Su, Wei-Nien |0 0000-0003-1494-2675 |b 2 |
700 | 1 | _ | |a Partovi-Azar, Pouya |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Kuo, Liang-Yin |b 4 |
700 | 1 | _ | |a Tsai, Meng-Che |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Lin, Ming-Hsien |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Panahian Jand, Sara |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Chan, Ting-Shan |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Wu, Nae-Lih |0 0000-0001-6545-8790 |b 9 |
700 | 1 | _ | |a Kaghazchi, Payam |0 P:(DE-Juel1)174502 |b 10 |u fzj |
700 | 1 | _ | |a Dai, Hongjie |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Bieker, Peter Maria |0 P:(DE-Juel1)180777 |b 12 |u fzj |
700 | 1 | _ | |a Hwang, Bing-Joe |0 P:(DE-Juel1)188933 |b 13 |u fzj |
773 | _ | _ | |a 10.1016/j.jpowsour.2021.229508 |g Vol. 492, p. 229508 - |0 PERI:(DE-600)1491915-1 |p 229508 - |t Journal of power sources |v 492 |y 2021 |x 0378-7753 |
909 | C | O | |o oai:juser.fz-juelich.de:903989 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)174502 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)180777 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)188933 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2019 |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-28 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-28 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2019 |d 2021-01-28 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|