000903991 001__ 903991
000903991 005__ 20240711085657.0
000903991 0247_ $$2doi$$a10.1002/smll.202104532
000903991 0247_ $$2ISSN$$a1613-6810
000903991 0247_ $$2ISSN$$a1613-6829
000903991 0247_ $$2Handle$$a2128/30890
000903991 0247_ $$2altmetric$$aaltmetric:115644809
000903991 0247_ $$2pmid$$a34677913
000903991 0247_ $$2WOS$$aWOS:000709875900001
000903991 037__ $$aFZJ-2021-05561
000903991 082__ $$a540
000903991 1001_ $$0P:(DE-HGF)0$$aJo, Chang-Heum$$b0
000903991 245__ $$aBio‐Derived Surface Layer Suitable for Long Term Cycling Ni‐Rich Cathode for Lithium‐Ion Batteries
000903991 260__ $$aWeinheim$$bWiley-VCH$$c2021
000903991 3367_ $$2DRIVER$$aarticle
000903991 3367_ $$2DataCite$$aOutput Types/Journal article
000903991 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648215282_15358
000903991 3367_ $$2BibTeX$$aARTICLE
000903991 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903991 3367_ $$00$$2EndNote$$aJournal Article
000903991 520__ $$aSince Ni-rich cathode material is very sensitive to moisture and easily forms residual lithium compounds that degrade cell performance, it is very important to pay attention to the selection of the surface modifying media. Accordingly, hydroxyapatite (Ca5(PO4)3(OH)), a tooth-derived material showing excellent mechanical and thermodynamic stabilities, is selected. To verify the availability of hydroxyapatite as a surface protection material, lithium-doped hydroxyapatite, Ca4.67Li0.33(PO4)3(OH), is formed with ≈10-nm layer after reacting with residual lithium compounds on Li[Ni0.8Co0.15Al0.05]O2, which spontaneously results in dramatic reduction of surface lithium residues to 2879 ppm from 22364 ppm. The Ca4.67Li0.33(PO4)3(OH)-modified Li[Ni0.8Co0.15Al0.05]O2 electrode provides ultra-long term cycling stability, enabling 1000 cycles retaining 66.3% of its initial capacity. Also, morphological degradations such as micro-cracking or amorphization of surface are significantly suppressed by the presence of Ca4.67Li0.33(PO4)3(OH) layer on the Li[Ni0.8Co0.15Al0.05]O2, of which the Ca4.67Li0.33(PO4)3(OH) is transformed to CaF2 via Ca4.67Li0.33(PO4)3F during the long term cycles reacting with HF in electrolyte. In addition, the authors’ density function theory (DFT) results explain the reason of instability of NCA and why CaF2 layers can delay the micro-cracking during electrochemical reaction. Therefore, the stable Ca4.67Li0.33(PO4)3F and CaF2 layers play a pivotal role to protect the Li[Ni0.8Co0.15Al0.05]O2 with ultra-long cycling stability.
000903991 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000903991 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903991 7001_ $$0P:(DE-HGF)0$$aVoronina, Natalia$$b1
000903991 7001_ $$0P:(DE-HGF)0$$aKim, Hee Jae$$b2
000903991 7001_ $$0P:(DE-HGF)0$$aYashiro, Hitoshi$$b3
000903991 7001_ $$0P:(DE-Juel1)164884$$aYaqoob, Najma$$b4$$ufzj
000903991 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000903991 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b6$$eCorresponding author
000903991 7001_ $$00000-0001-6888-5376$$aMyung, Seung-Taek$$b7$$eCorresponding author
000903991 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202104532$$gVol. 17, no. 47, p. 2104532 -$$n47$$p2104532 -$$tSmall$$v17$$x1613-6810$$y2021
000903991 8564_ $$uhttps://juser.fz-juelich.de/record/903991/files/Small%20-%202021%20-%20Jo%20-%20Bio%E2%80%90Derived%20Surface%20Layer%20Suitable%20for%20Long%20Term%20Cycling%20Ni%E2%80%90Rich%20Cathode%20for%20Lithium%E2%80%90Ion%20Batteries.pdf$$yRestricted
000903991 8564_ $$uhttps://juser.fz-juelich.de/record/903991/files/Bio_Derived_Surface_Layer_Suitable_for_Long_Term_Cycling_Ni_rich.pdf$$yPublished on 2021-10-22. Available in OpenAccess from 2022-10-22.
000903991 909CO $$ooai:juser.fz-juelich.de:903991$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164884$$aForschungszentrum Jülich$$b4$$kFZJ
000903991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000903991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b6$$kFZJ
000903991 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000903991 9141_ $$y2022
000903991 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000903991 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000903991 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903991 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000903991 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000903991 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000903991 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2019$$d2021-01-27
000903991 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000903991 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2019$$d2021-01-27
000903991 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000903991 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000903991 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000903991 9801_ $$aFullTexts
000903991 980__ $$ajournal
000903991 980__ $$aVDB
000903991 980__ $$aUNRESTRICTED
000903991 980__ $$aI:(DE-Juel1)IEK-1-20101013
000903991 981__ $$aI:(DE-Juel1)IMD-2-20101013