Hauptseite > Publikationsdatenbank > Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li-S battery > print |
001 | 903992 | ||
005 | 20240708132739.0 | ||
024 | 7 | _ | |a 10.1016/j.nanoen.2021.106331 |2 doi |
024 | 7 | _ | |a 2211-2855 |2 ISSN |
024 | 7 | _ | |a 2211-3282 |2 ISSN |
024 | 7 | _ | |a 2128/30896 |2 Handle |
024 | 7 | _ | |a altmetric:109341693 |2 altmetric |
024 | 7 | _ | |a WOS:000709716200002 |2 WOS |
037 | _ | _ | |a FZJ-2021-05562 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Li, Zhenwei |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li-S battery |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648218600_15358 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The major hurdle in Li-S battery commercialization is the severe shuttle effect and sluggish reaction kinetics of polysulfide conversion during charge-discharge cycling. Herein, to overcome these barriers, we designed and synthesized Zn defective Zn/Co oxide (ZDZCO) nanosheets, a cation-vacancy-rich bimetallic oxide for the construction of a multifunctional polysulfide-blocking layer. Both theoretical and experimental studies have comprehensively demonstrated that the ZDZCO shows robust binding capability towards polysulfides and a high catalytic ability for fast polysulfide conversion. Through a facile coating process, the multifunctional ZDZCO polysulfide-blocking layer is incorporated on a commercial polypropylene separator, forming a composite separator. The resultant separator facilitates an ultrahigh sulfur loading of 21.06 mg cm-2 and an areal capacity as high as 24.25 mAh cm-2. This study illuminates a promising and practical strategy to construct high-performance Li-S batteries with high sulfur loading. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Zhang, Qian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hencz, Luke |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Liu, Jie |0 P:(DE-Juel1)145655 |b 3 |e Corresponding author |
700 | 1 | _ | |a Kaghazchi, Payam |0 P:(DE-Juel1)174502 |b 4 |u fzj |
700 | 1 | _ | |a Han, Jishu |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Wang, Lei |0 P:(DE-Juel1)184889 |b 6 |e Corresponding author |
700 | 1 | _ | |a Zhang, Shanqing |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.nanoen.2021.106331 |g Vol. 89, p. 106331 - |0 PERI:(DE-600)2648700-7 |p 106331 - |t Nano energy |v 89 |y 2021 |x 2211-2855 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/903992/files/Multifunctional-cation-vacancy.pdf |y Published on 2021-07-10. Available in OpenAccess from 2023-07-10. |
909 | C | O | |o oai:juser.fz-juelich.de:903992 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)174502 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-28 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NANO ENERGY : 2019 |d 2021-01-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO ENERGY : 2019 |d 2021-01-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-28 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|