000903993 001__ 903993
000903993 005__ 20240711085626.0
000903993 0247_ $$2doi$$a10.3390/nano11041054
000903993 0247_ $$2Handle$$a2128/30112
000903993 0247_ $$2pmid$$a33924150
000903993 0247_ $$2WOS$$aWOS:000643354400001
000903993 037__ $$aFZJ-2021-05563
000903993 082__ $$a540
000903993 1001_ $$aLiu, Xianyu$$b0
000903993 245__ $$aVanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries
000903993 260__ $$aBasel$$bMDPI$$c2021
000903993 3367_ $$2DRIVER$$aarticle
000903993 3367_ $$2DataCite$$aOutput Types/Journal article
000903993 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648126579_11907
000903993 3367_ $$2BibTeX$$aARTICLE
000903993 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903993 3367_ $$00$$2EndNote$$aJournal Article
000903993 520__ $$aAqueous zinc-ion batteries (ZIBs) with the characteristics of low production costs and good safety have been regarded as ideal candidates for large-scale energy storage applications. However, the nonconductive and non-redox active polymer used as the binder in the traditional preparation of electrodes hinders the exposure of active sites and limits the diffusion of ions, compromising the energy density of the electrode in ZIBs. Herein, we fabricated vanadium pentoxide nanofibers/carbon nanotubes (V2O5/CNTs) hybrid films as binder-free cathodes for ZIBs. High ionic conductivity and electronic conductivity were enabled in the V2O5/CNTs film due to the porous structure of the film and the introduction of carbon nanotubes with high electronic conductivity. As a result, the batteries based on the V2O5/CNTs film exhibited a higher capacity of 390 mAh g−1 at 1 A g−1, as compared to batteries based on V2O5 (263 mAh g−1). Even at 5 A g−1, the battery based on the V2O5/CNTs film maintained a capacity of 250 mAh g−1 after 2000 cycles with a capacity retention of 94%. In addition, the V2O5/CNTs film electrode also showed a high energy/power density (e.g., 67 kW kg−1/267 Wh kg−1). The capacitance response and rapid diffusion coefficient of Zn2+ (~10−8 cm−2 s−1) can explain the excellent rate capability of V2O5/CNTs. The vanadium pentoxide nanofibers/carbon nanotubes hybrid film as binder-free cathodes showed a high capability and a stable cyclability, demonstrating that it is highly promising for large-scale energy storage applications
000903993 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000903993 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903993 7001_ $$aMa, Liwen$$b1
000903993 7001_ $$aDu, Yehong$$b2
000903993 7001_ $$00000-0001-6998-6275$$aLu, Qiongqiong$$b3
000903993 7001_ $$0P:(DE-Juel1)180575$$aYang, Aikai$$b4
000903993 7001_ $$0P:(DE-HGF)0$$aWang, Xinyu$$b5$$eCorresponding author
000903993 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano11041054$$gVol. 11, no. 4, p. 1054 -$$n4$$p1054 -$$tNanomaterials$$v11$$x2079-4991$$y2021
000903993 8564_ $$uhttps://juser.fz-juelich.de/record/903993/files/nanomaterials-11-01054-v2.pdf$$yOpenAccess
000903993 909CO $$ooai:juser.fz-juelich.de:903993$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903993 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180575$$aForschungszentrum Jülich$$b4$$kFZJ
000903993 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000903993 9141_ $$y2021
000903993 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000903993 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903993 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2019$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903993 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000903993 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000903993 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000903993 9801_ $$aFullTexts
000903993 980__ $$ajournal
000903993 980__ $$aVDB
000903993 980__ $$aI:(DE-Juel1)IEK-1-20101013
000903993 980__ $$aUNRESTRICTED
000903993 981__ $$aI:(DE-Juel1)IMD-2-20101013