001     903998
005     20240708132739.0
024 7 _ |a 10.1016/j.ijrmhm.2021.105592
|2 doi
024 7 _ |a 0263-4368
|2 ISSN
024 7 _ |a 0958-0611
|2 ISSN
024 7 _ |a 2213-3917
|2 ISSN
024 7 _ |a 2128/30828
|2 Handle
024 7 _ |a WOS:000670281300006
|2 WOS
037 _ _ |a FZJ-2021-05568
082 _ _ |a 670
100 1 _ |a Prieto, E.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Novel high entropy alloys as binder in cermets: From design to sintering
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1646380099_25164
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years a new group of alloys has emerged breaking with the classical alloying concepts of physical metallurgy, high entropy alloys (HEA). Their main characteristic is that these alloys present 4 or 5 main elements increasing the entropy of the system and favouring the formation of a single phase. The disordered solid solution leads to develop an alloy with improved properties, in particular high thermal stability, hardness and strength. These properties make this group of alloys attractive as potential candidates for alternative binders in hard materials. In this work, two new compositions have been designed with the aim of obtaining a single BCC phase, reducing the cost and minimizing the presence of critical elements using elements that can present good potential properties for a cermet and with low toxicity and price such as Al, Cr, Mo, Ni, Fe and Ti. The design has been made based on the composition calculation applying the HEA phase formation empirical rules from literature in combination with thermodynamic simulations by Calphad method. The viability of the compositions has been studied through the processing of the compositions by casting and the study of wettability and solubility at high temperature on the hard phase of TiCN. Once the chosen compositions have been validated as competitive binders, cermets have been consolidated by spark plasma sintering (SPS) and the influence of the compositions on the mechanical properties of the compound materials has been studied.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vaz-Romero, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gonzalez-Julian, J.
|0 P:(DE-Juel1)162271
|b 2
|u fzj
700 1 _ |a Guo, S.
|0 P:(DE-Juel1)180459
|b 3
700 1 _ |a Alvaredo, P.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.ijrmhm.2021.105592
|g Vol. 99, p. 105592 -
|0 PERI:(DE-600)2015219-X
|p 105592 -
|t International journal of refractory metals & hard materials
|v 99
|y 2021
|x 0263-4368
856 4 _ |u https://juser.fz-juelich.de/record/903998/files/Novel%20high%20entropy%20alloys%20as%20binder%20in%20cermets%20From%20design%20to%20sintering.pdf
|y Published on 2021-06-05. Available in OpenAccess from 2023-06-05.
909 C O |o oai:juser.fz-juelich.de:903998
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162271
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J REFRACT MET H : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21