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We study the unidirectional magnetoresistance (UMR) and the nonlinear Hall effect (NLHE) in
the ferromagnetic Rashba model. For this purpose we derive expressions to describe the response
of the electric current quadratic in the applied electric field. We compare two different formalisms,
namely the standard Keldysh nonequilibrium formalism and the Moyal-Keldysh formalism, to de-
rive the nonlinear conductivities of UMR and NLHE. We find that both formalisms lead to identical
numerical results when applied to the ferromagnetic Rashba model. The UMR, and the NLHE non-
linear conductivities tend to be comparable in magnitude according to our calculations. Additionally,
their dependencies on the Rashba parameter and on the quasiparticle broadening are similar. The
nonlinear zero-frequency response considered here is several orders of magnitude higher than the
one at optical frequencies that describes the photocurrent generation in the ferromagnetic Rashba
model. Additionally, we compare our Keldysh nonequilibrium expression in the independent-particle
approximation to literature expressions of the UMR that have been obtained within the constant
relaxation time approximation of the Boltzmann formalism. We find that both formalisms converge
to the same analytical formula in the limit of infinite relaxation time. However, remarkably, we find
that the Boltzmann result does not correspond to the intraband term of the Keldysh expression.
Instead, the Boltzmann result corresponds to the sum of the intraband term and an interband term

that can be brought into the form of an effective intraband term due to the f-sum rule.

I. INTRODUCTION

In magnetic bilayers such as Co/Pt, which are com-
posed of a ferromagnetic layer and a heavy metal layer, a
change in the longitudinal resistance is observed when ei-
ther the applied in-plane current or the magnetization is
reversed ﬁ] This so-called unidirectional magnetore-

sistance (UMR) is proportional to (j x e,) - M, where j,
M , and e, denote the electric current, the magnetization
direction, and the unit vector along the bilayer interface
normal, respectively. UMR is a nonlinear magnetoresis-
tance, because the corresponding voltage is quadratic in
the applied electric current. Therefore, UMR, generates
a 2nd harmonic voltage when an a.c. current is applied.
UMR can be used to detect 180° magnetization rever-
sal [4, 5] and to realize reversible diodes [6]. Using UMR
the four different magnetic states that may be realized
in ferromagnet /nonmagnet /ferromagnet trilayers may be
differentiated Né]

One contribution to the UMR arises from spin ac-
cumulation in the ferromagnetic layer, which modifies
the electrical conductivity when the mobility is spin-
dependent ﬂa] The spin accumulation itself may arise
from the spin Hall effect (SHE) in the heavy metal, which
injects spin current into the ferromagnet. Additionally,
the interfacial spin accumulation may modify the inter-
face contribution to the conductivity, which may con-
tribute to the UMR as well ﬂﬂ] A thickness-dependent
study ﬂg] in magnetic bilayers confirms the role of the
SHE for the UMR. Another indication that the SHE is
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very often at the heart of the UMR in metallic bilay-
ers comes from the observation that the UMR correlates
with the antidamping spin-orbit torque, but not with
the field-like one @] This picture changes if Rashba
interface states dominate the interfacial magnetotrans-
port properties: In Fe/Ge(111) a large UMR has been
found that has been attributed to the Rashba effect of
the interface states ﬂg] Also in heterostructures com-
posed of a topological insulator on a ferromagnet the
Rashba-Edelstein effect has been found to contribute to
the UMR as well [10].

Moreover, the spin current injected into the ferromag-
net due to the SHE of the heavy metal layer may excite
magnons in the ferromagnet. These magnons may modify
the resistivity of the ferromagnetic layer similarly to the
spin-disorder contribution to the resistivity and thus con-
tribute to the UMR, ﬂ] The large UMR in topological in-
sulator heterostructures has been attributed to asymmet-
ric electron-magnon scattering ] Finally, UMR exists
not only in magnetic heterostructures but also in bulk fer-
romagnets with broken inversion symmetry M, ﬂ], which
might require different models to describe the UMR than
the heterostructures.

In addition to the UMR the nonlinear response to the
applied electric current contains also the nonlinear Hall
effect (NLHE) [13]. Some mechanisms of the UMR. dis-
cussed above may also lead to NLHE. For example, asym-
metric electron-magnon scattering has been found to con-
tribute to the NLHE [14].

So far, most theoretical models of UMR address only
one particular mechanism. Ref. ﬂa] develops a model to
describe the UMR from the modulation of the conductiv-
ity of the ferromagnetic layer when a spin current from a
heavy metal layer is injected due to the SHE. For mag-
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netic bilayer systems composed of an insulating ferro-
magnet on a heavy metal layer a theoretical model was
developed to describe the magnonic contribution to the
UMR [15]. Ref. [12] uses the Boltzmann transport the-
ory to derive an expression for UMR, which is applied to
NiMnSb. Ref. HE] expresses the nonlinear conductivity
in the clean limit in terms of the Berry curvature dipole
and a Drude term and applies this theory to a model of
BaMnoyAss.

While UMR and NLHE are relatively new effects in
spintronics, there are much older second order responses
well-known in nonlinear optics, e.g. the shift current, the
injection current and the 2nd harmonic generation ﬂﬂ]
The nonlinear conductivities at optical frequencies con-
tain also the photovoltaic anomalous Hall effect, which
has been considered recently in line-node semimetals HE],
and it also contains the photovoltaic chiral magnetic
effect, which has been studied in Weyl semimetals re-
cently HE] At first glance it is tempting to guess that
formulae suitable to compute the UMR and the NLHE
may be obtained easily by taking the zero-frequency limit
of the dc photocurrent expressions. However, as we will
discuss in this work this is not the case. Nevertheless,
it is instructive to compare the second order response
tensors derived in nonlinear optics to the expressions
for UMR and NLHE. Since second order response co-
efficients are considerably more complicated to compute
than the linear ones a large number of nonlinear optics
works are devoted to the topic of comparing various for-
malisms and finding the most efficient approach for cal-
culations ﬂﬂ, @—lﬁ An important conclusion of these
works is that all formalisms yield the same answer if all
caveats are considered properly.

In view of the large number of the proposed mecha-
nisms of UMR and NLHE it is desirable to derive general
expressions for the nonlinear response coefficients that
quantify these effects. Ideally, these expressions should
cover all possible mechanisms and they should be in a
form that allows us to apply them within first-principles
density-functional theory calculations. In this work we
derive formulae for the second order response of the elec-
tric current to an applied electric field using two differ-
ent approaches: The Keldysh nonequilibrium formalism
on the one hand and the Moyal-Keldysh formalism on
the other hand. We show that these two different for-
malisms lead to identical numerical results for the UMR
and the NLHE in the ferromagnetic Rashba model, which
corroborates the applicability of both methods to mag-
netic Hamiltonians with spin-orbit interaction (SOI). In
our numerical study of the Rashba model we use the
independent particle approximation and describe effects
of disorder effectively through a quasiparticle broaden-
ing parameter. However, in our general presentation of
the Moyal-Keldysh formalism we give explicit expressions
for the self-energies, which may be used to go beyond
this constant broadening model. In our discussion of the
UMR and NLHE in the ferromagnetic Rashba model we
investigate the dependence on the SOI strength, on the

Fermi energy, and on the quasiparticle broadening. Addi-
tionally, we show analytically that the Keldysh approach
converges to the same result as an expression in the liter-
ature that was obtained from the Boltzmann formalism
within the constant relaxation time approximation.
This paper is structured as follows: In Sec. [T Al we
use the Keldysh formalism to derive the response coef-
ficient for the second order in the applied electric field.
In Sec. we use the Moyal-Keldysh technique to de-
rive this response, where we defer detailed definitions of
Green functions and self energies to the Appendix [Al In
Sec. [[LC] we introduce the ferromagnetic Rashba model,
which we use for the numerical study of UMR and
NLHE. In Sec. we discuss the symmetry properties
of the UMR and the NLHE in the ferromagnetic Rashba
model. In Sec.[[llwe discuss the numerical results on the
UMR and the NLHE that we obtain in the ferromagnetic
Rashba model using our Keldysh and Moyal-Keldysh ap-
proaches. This paper ends with a summary in Sec. [Vl

II. FORMALISM
A. Keldysh formalism

We describe the action of the applied electric field
through the time-dependent perturbation

0H(t) = ev - A(t) (1)

to the Hamiltonian H, where e is the elementary positive
charge, v is the velocity operator and
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In the course of the following derivations we will take the
limit frequency w — 0 below in order to extract the dc
response.

The electric current density is given by

j(t) = —%ﬁ [wG=(t,1)], (4)

where G< is the lesser Green function and V is the vol-
ume of the system. One may expand G< in orders of
the perturbation 6 H(t). The contribution to G< that is
quadratic in 0H (t) is given by [27]
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where
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is the retarded Green function in equilibrium with Fourier
transform G (E) = h/[€ — H +4T]. Similarly, G§ (t,t1)
and G (t,t1) are the advanced and lesser Green functions
in equilibrium, respectively, with Fourier transforms
G (€) = [GRE)]T and Gy () = [GA(E) — GRENF(E),
where f(€) is the Fermi-Dirac distribution function. In
this section we use the independent particle approxima-
tion and assume that lifetime effects and effects of im-
purity scattering can be described by the quasiparticle
broadening T' > 0. In section [IBl we will give explicit
expressions to compute the self-energy within the Moyal-
Keldysh approach.

In order to evaluate the time-integrations in Eq. (&) we
use

/dtl‘/dtgGg (f, t1 )e—iw1t1 Gg/ (tl, t2)e—iW2t2 Gg// (tg, t) =

e—i[wl-l-wg]t , ,
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(7)
where 1,17',n” = R,A, < and w;,ws = *w. When we
set w1 = wo = Fw we obtain the 2w and —2w contri-
butions, while we access the dc component by setting
w1 = —wg = Fw. Thus, the —2w component of the lesser
Green function is given by
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and the dc component is as follows:
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Obviously, these three components may be written
as products of the w™2 factor, the complex exponen-
tial, and the remainder of the expression: G=, (t,t) =
w2gS, (wye 2wt Gs (tt) = w2gs (w)e*™ and

G5.(t,t) = w2g5.(w). The sum of these three contri-
butions may thus be formulated as

[Ga (1) + G3, (8, 1) + GR.(t.1)] =
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Next, we need to take the w — 0 limit in order to ex-
tract the dc response. Since the dc response is time-
independent by definition, we have the freedom to set
t in Eq. (I2) to a value that makes the evaluation par-
ticularly convenient. Therefore, we choose t = 0, be-
cause then only the first term on the right-hand side of
Eq. (I2) needs to be computed, because the second and
third terms are zero for t = 0:

[Gf2w (07 0) + G2<w (07 O) + ch(ov 0)] =

13
L 10%00(®) + 95, ) + g5 )] (13)
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In order to compute the zero-frequency limit of Eq. (I3)
we first observe that lim,, 0[5, (w)+ g5, (W) +g5.(w)] =
0, because

lim [-F(w, —w) — F(—w,w) + F(—w, —w) + F(w,w)]

w—0

= [-F(0,0) — F(0,0) + F(0,0) + F(0,0)] = 0.

Moreover, we can show that
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These zero-frequency limits of the second derivatives
are given by
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Summing up terms, we obtain
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The energy derivative of the lesser Green function con-
tains one term proportional to the Fermi function and a
second term proportional to the energy derivative of the
Fermi function:
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First, we separate these contributions proportional to f

and f’ in Eq. (20). The terms proportional to f yield
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GM(E) = GY(E) - GR(&). (23)

We introduce the second-order conductivity tensor oqg-
through
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From Eq. 22 we obtain the following contribution to
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Additionally, the terms proportional to f’ produce the
contribution
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to the lesser Green function, which contributes

2¢3
o =30 [ reem{m
, 9GH(E)
Y

to the conductivity. The total second-order conductivity
tensor is given by
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When we compare the derivations in this section to
the derivations of the expressions for the laser-induced



de torque [25] and dc photocurrent [26] within the
Keldysh nonequilibrium formalism we observe that 4+
in Eq. (28)) is not simply related to the w — 0 limit of the
dc photocurrent. The reason for this is that we have to
discard the 2nd harmonics in the derivation of the dc pho-
tocurrent. However, in the derivation of the expression
for 04py we cannot discard the 2nd harmonics, because
they contribute to the dc response as w — 0. The ob-
servation that the second-order dc response is not simply
the w — 0 limit of the dc photocurrent may also be ob-
tained by a different argument: The photocurrent and
the inverse Faraday effect may diverge as w — 0 m, @],
while the second-order response to a dc electric field has
to be finite.

In order to apply Eq. (28) and Eq. 7)) to periodic
solids we introduce periodic boundary conditions. As a
consequence, the Hamiltonian and the Green function be-
come dependent on the k-point, but we do not write this
k-dependence explicitly in the equations for notational
convenience. We introduce a k-integration by replacing
the system volume in Eq. (25) and Eq. 1) as follows:

1 dPk
V%/W (29)

where D is the dimension of the system.
Important contributions to Eq. (28] are given by the
intraband terms:
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where vq kn, = (knlvg|kn) are the intraband matrix el-
ements of the velocity operator, &, is the band energy
of an electron in band n at k-point k and |kn) is the
corresponding state. Using integration by parts we may
rewrite Eq. B0) as follows:
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In the limit I' — O this turns into
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where 7 = h/(2I) is the relaxation time.
Interestingly, Eq. (32) differs from the Boltzmann re-
sult [12]

Z Ua,k'nvﬂ,k'nv'y,knfn (gkn)u
(32)
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by a factor of 2. This means that the intraband terms in
the Keldysh approach do not directly correspond to the
Boltzmann result. The reason for this is that the f-sum
rule [29]

1 0% o } (Kl Jva| kn) (kn |vg| ki)
— - 22

ﬁakaakg m* = Eri — Ekn

(34)
allows us to transform intraband terms into interband
terms and vice versa: The left-hand side of this expres-
sion seems to be an intraband term, while the right-hand
side of this expression seems to be an interband term.
This means that the terms ’intraband’ and ’interband’
need to be used with care, because the one kind may be
transformed into the other kind @] In this expression
m™ is the mass used in the expression of the kinetic energy
in the Hamiltonian. Thus, in the framework of ab-initio
density-functional theory calculations m* is the electron
mass, i.e., m* = me. However, in the Rashba model,
which we discuss in Sec.[[LC] m* is a free parameter that
can be tuned to model the band dispersion.

While the intraband terms of the rigorous quantum
mechanical first-order perturbation theory usually corre-
spond to the semiclassical approach, this is not true any
more for the higher order perturbation theory. Already
in the second order perturbation theory the f-sum rule
needs to be used in order to connect the rigorous quan-
tum mechanical approach to the semiclassical one in the
case of the orbital magnetic susceptibility @]

In order to see that the f-sum rule allows us to resolve
the discrepancy between Eq. (82) and Eq. (33) we con-
sider the identity

, r2f/(&€)de T,
el U7y s i gy R T
(35)

which can be used to show that Eq. 27) contains pre-
cisely one interband term that scales like I'~2 in the clean

limit, namely
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Employing integration by parts we obtain first
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which proves that the Boltzmann formalism and the
Keldysh formalism within the independent particle ap-
proximation yield identical results in the limit 7 — oo,
i.e., in the limit I' — 0.

B. Moyal-Keldysh approach

Using the Moyal product Ref. @] expands the Dyson
equation in static electric and magnetic fields. A com-
pact and general expression for the nonequilibrium Green
function is given, which describes the perturbation by
static electric and magnetic fields up to any required or-
der in this perturbation. In the following we evaluate this
general expression for the nonequilibrium Green function
from Ref. @] at the second order in the applied electric
field in order to obtain an expression for the nonlinear
response of the electric current to the applied electric
field.

This Moyal-Keldysh approach differs from the Keldysh
approach in Sec. [[TAlin two major aspects: In Sec. [TAl
we consider a spatially homogeneous time-dependent
electric field and take the zero-frequency limit towards
the end of the derivations. Therefore, we use a spatially
homogeneous vector potential to describe the perturba-
tion by the electric field (in works on nonlinear optics this
choice is often referred to as the velocity gauge’ [20-24)).
In contrast, the Moyal-Keldysh approach of Ref. [30] con-
siders the perturbation by static electromagnetic fields
without taking any zero-frequency limit. In this approach
the perturbation by a spatially homogeneous electric field
is therefore described by a spatially inhomogeneous scalar
potential (in works on nonlinear optics this choice is of-
ten referred to as the ’length gauge’ [20-23]). The dif-
ficulty of dealing with a spatially inhomogeneous non-
periodic perturbation in the context of an infinite peri-
odic crystal is solved elegantly in Ref. @] through the
use of the Moyal product. Due to these two major dif-
ferences, namely the time-dependence on the one hand
and the use of the Moyal product on the other hand, the
derivations in Sec.[[[Alare quite distinct from the formal-
ism described in this section. In the results section we
will show that these two rather distinct approaches yield
identical numerical results. We therefore present both
techniques in this manuscript, because they corroborate

each other and thereby demonstrate the validity of both
approaches for magnetic Hamiltonians with SOI.

Similar comparisons between the velocity gauge and
the length gauge have been done for nonlinear optical re-
sponses [17, [20-23]). Some of these works stress the ad-
vantages of the length gauge approach, while others stress
those of the velocity gauge approach. Ref. ] advertises
the velocity gauge as the more convenient choice in the
context of a diagrammatic approach. However, there is
also a diagrammatic approach to the Moyal technique
(see Appendix C in Ref. [31] for an illustration of several
diagrams) and therefore the length gauge may be imple-
mented diagrammatically as well if the Moyal technique
is used.

Ref. @] provides the following expansion of the
Green’s function in orders of the electromagnetic field
tensor F'MV:
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are the Green function and the self energy in matrix form,
respectively. In the first order, the electromagnetic field
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where 7# = (7% 7!, 72, 7%) = (€/c,hk) is the 4-
momentum (¢ is the velocity of light), 0. = 0/0n" is
the corresponding derivative, and Gy is the equilibrium
Green function in matrix form. In order to obtain the
Green function at the second order in the electric field
we set F'0 = E;/c and FY = —F;/c, which simplifies
Eq. ) to
2.2
G=0Co+ %GEE + %éEiijEiEj ..., (46)
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In Eq. (1) up to two energy derivatives 0,0 may act
on the Green functions. The second energy derivative of
G5 (E) = [GH(E) — GE(£))]f(E) generates terms propor-
tional to f, to f’ and to f”. Consequently, the lesser-
component of G, g, may be written as

Giom, = F )G 5, +F(E)GE 5, +1"()GE 5, (48)
According to Eq. 28) and Eq. ([217) the Keldysh formal-
ism in the previous section does not yield a term pro-
portional to f” at first. However, already in Eq. (3I))
we have shown that integration by parts leads to terms
proportional to f”. Conversely, we may use integration
by parts to rewrite the term involving f” in Eq. @S] as
a term proportional to f’. Therefore, the separation into
terms proportional to f, f’, and f” is ambiguous rather
than unique. Consequently, when comparing the two for-
malisms numerically in Sec. [Illwe only compare the total
second order conductivities rather than their separation
into terms proportional to f, f’, and f”.

Finally, the second order conductivity in the Moyal-
Keldysh approach may be written as

h2e3

= <
Tapy = =3 | AETE [leEiﬁEj(s)], (49)

where G, 5. (€) is given by Eq. (ES).

Detailed expressions of the self energies E%h B Z%i,

< < I < < I .
Y5 g, Y5, Xp, » g, g, and of several Green functions

are given in the Appendix[Al In Eq. (A2), Eq. (A4), and
Eq. (AF) we have provided the general expressions for
G%MEJ_ &), GEZIE] (€), and GEIEJ (&), respectively, which
determine G, £, (€) according to Eq. (8). However, for
the numerical calculations in this manuscript we only use
a constant broadening I'. Consequently, we set the self-
energies Z%i)Ej, E%i, EE;TE]" ZEI, EEH, EE}EJ to zero,
which simplifies the Eq. (A2)), Eq. (Ad)), and Eq. (&)
significantly.

In the Keldysh approach a major part of the deriva-
tions is devoted to evaluating the limit w — 0 as Sec. [[TAl
shows. We suspect that with increasing order of the per-
turbation by the electric field taking this dc limit will
become more and more cumbersome. In contrast, in the
Moyal-Keldysh approach used in this section the zero-
frequency dc response is obtained directly. This is a ma-
jor advantage of the Moyal-Keldysh approach over the
standard Keldysh approach in applications to the zero-
frequency dc response.

C. Rashba model

In this work we compute UMR and NLHE in the mag-
netic Rashba model [32]

n? A .

where a® is the Rashba parameter, M is the magneti-
zation direction, and AV is the exchange splitting. The
mass m* may be tuned to match the band dispersion of a
given interfacial or surface state. The electrons are con-
strained to move in the xy plane, i.e., k = (kg k,,0)"
and z = 0. The Rashba model is suitable to describe
the UMR from interfacial Rashba states ﬂg] The ef-
fects of injection of spin-current generated in one region
into a second region are not captured by the Rashba
model, because it describes only a single homogeneous
two-dimensional region.

When the magnetization points in the z direction,
i.e.,, M = é,, the eigenenergies of Hy at k-points k =
(0,ky,0)T and —k = (0, —k,,0)T differ. This k vs —k
asymmetry has been observed in angle-resolved photoe-
mission spectroscopy experiments ﬂ%] and it has been
suggested that it influences electron transport properties,
namely there should be a difference in electron transport
depending on whether the current is applied in the y
direction or in the —y direction. Explicitly, Ref. ﬂﬁ] sug-
gests that the applied current leads to a torque on the
magnetization that changes the resisitivity due to the
anisotropic magnetoresistance. As a consequence, a volt-
age component quadratic in the applied electric current



is predicted, which indeed means that the resistivity de-
pends on whether the current is applied in the y direction
or in the —y direction.

Additionally, the resistivity is expected to depend on
whether the current is applied in the y direction or in the
—y direction also due to the UMR. When measuring the
UMR one therefore needs to make sure that the magne-
tization direction is fixed in order to avoid the contribu-
tion from the modulation of the magnetoresistance by the
current-induced torque described in Ref. ﬂﬁ] Neverthe-
less, the UMR in the Rashba model is still related to the
k vs —k asymmetry. Similarly, the nonlinear transverse
response of the electric current may contain contributions
from two different kinds of effects: The current-induced
spin-orbit torque may modulate the anomalous Hall ef-
fect and additionally there may be an NLHE M]

In order to apply Eq. (23), Eq. [21), and Eq. 9) to
the Rashba model we introduce a k integration according
to Eq. 29) with D = 2.

D. Symmetry

In the following we discuss the constraints on the UMR
and NLHE currents in the Rashba model imposed by
symmetry. We consider an electric current induced at
the second order of an applied electric field. In the non-
magnetic case, i.e., when AV =0 in Eq. (&), symmetry
forbids an electric current quadratic in the applied elec-
tric field: A ¢y rotation around the z direction inverts
the induced electric current, consequently it has to van-
ish. For the same reason there is no quadratic response
of the electric current in the magnetic case (AV # 0)
when the magnetization is out-of-plane, i.e., along the z
direction.

Next, we consider the magnetic case with magnetiza-
tion in-plane in the x direction. When the electric field is
applied in the x direction, or in the y direction, no J, is
expected, because the yz mirror plane flips the response-
current but not the magnetization. However, the zx mir-
ror plane does not forbid J,, if it is odd in M, i.e., o211
and o999 are allowed by symmetry. Since o217 describes
a response current transverse to the applied electric field,
we call it an NLHE. In contrast, the component o925 de-
scribes a UMR. For the analysis of experiments, UMR
is defined as a resistivity that changes sign when the di-
rection of the electric current is reversed and also when
the magnetization direction is reversed @] Our descrip-
tion of UMR by a second order response coefficient 05+
automatically satisfies the first requirement in this defi-
nition. The second requirement, namely the sign change
when the magnetization direction is reversed, is met by
the coefﬁcientA 0992 in the Rashba model due to sym-

metry: oaga(M) = —o922(—M) because the zz mirror
plane forbids contributions to 229 (M ) that are even in
M.

When the electric field is applied in the direction of

[éx + €,]/V/2, the za mirror plane modifies the electric
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_ — 211 (K)
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Fermi energy [eV]

FIG. 1. Nonlinear conductivity oog, vs. Fermi energy. Com-
parison between the Keldysh approach (K) and the Moyal-
Keldysh approach (MK). a® = 2 eVA, AV = 1eV, ' =
1.36 eV, and M]|| — &, are used in the calculation. Both ap-
proaches yield identical results.

field direction into [é,—é,]/+v/2, it flips the magnetization,
while it preserves J;. Thus, 0113 and 0121 are allowed by
symmetry, if they are odd in M. The yz mirror plane
modifies the [é, + é,]/v/2 direction of the electric field
into [—é, + é,]/v/2, while it preserves the magnetization
and Jy. Thus, 0212 and 0221 are forbidden by symmetry.

III. RESULTS

In this section we discuss the UMR and the NLHE in
the ferromagnetic Rashba model introduced in Sec. [ILCl
We set the mass m* in the Rashba model to the electron
mass Mme, i.e., m* = me. A Rashba parameter of of* =
0.095¢VA [34] has been estimated in Co/Pt [34] magnetic
bilayers. Very high o parameters (up to af = 3.05eVA)
have been reported for Bi/Ag(111) surface alloys [33,[35].
An even higher value of o = 3.85¢VA has been reported
for BiTel [36]. Our choice of o in the numerical calcula-
tions below covers a similar range of Rashba parameters.

Fig. [ shows the comparison between the Keldysh
and the Moyal-Keldysh approaches for the parameters
o = 2eVA, AV =1 eV, and I' = 1.36 eV when the
magnetization points in the —z direction. The figure
demonstates that the Keldysh and the Moyal-Keldysh
approaches yield identical results for the nonlinear con-
ductivity o3+, which corroborates the validity of both
approaches. In agreement with the symmetry analysis in
Sec. the following tensor components are zero (not
shown in the figure): o111, 0122, 0212, 0221. Moreover,
symmetry dictates that o112 = 0121 (therefore, we show
only o112 in the figure). When we compare the maxima
of the UMR and the NLHE we find that they are compa-
rable in magnitude. When we investigate the dependence
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FIG. 2. Tensor 0,5, vs. broadening I' when M| — &,
a® =720 meVA, & = 0, and AV = 1 eV. Solid lines show
the results of the clean-limit Boltzmann (CLB) expression
Eq. [B3), while the results obtained from Eq. (28)) are shown
by symbols. CLB is symmetric under any permution of the
indices of oapy. Consequently, we show only 112 (CLB) in
the figure, because 211 (CLB) and 121 (CLB) are equal to it.

of the UMR. and of the NLHE on I' and on a® in the fig-
ures below we find that this property persists also when
these parameters are changed.

In order to study the dependence of the UMR and
of the NLHE on the broadening I', we show the I'-
dependence of the nonlinear conductivity in Fig. 2 at
the Fermi energy & = 0, Rashba parameter of* =
720 meVA, and exchange splitting AV = 1 eV, when
M points in the —z direction. In order to facilitate the
illustration of the entire range from small values of " up
to large values of ' we plot I'?0yj in this figure, be-
cause the factor I'? compensates the oc I'~2-behaviour
expected in the clean limit according to Eq. (82) and
Eq. 39). The clean-limit Boltzmann result Eq. (@0)
is shown in the figure as well by solid horizontal lines
(CLB). The figure shows that the deviations of the clean-
limit behaviour from the complete Keldysh results be-
come substantial when I' gets large. Such deviations
might contribute to the discrepancies found between the
Boltzmann-formalism calculations and the experiment in
NiMnSbh [12]. Since the Boltzmann formalism yields a

tensor oi%cfyltz) that is symmetric ﬂﬂ, 14, @—@] under
permutation of the indices «, 8, and -, we show in Fig.

only the component o\55"" of the NLHE. In contrast,
(Boltz) (Boltz)
7 011

the Keldysh formalism predicts 0,75 when
the clean-limit expression does not hold, i.e., when T" is

sufficiently large. Clearly, one may argue generally that
the violation Uﬁ’; Itz) # oé?f %) indicates that the relax-
ation time approximation within the Boltzmann formal-

ism fails on the quantitative level. Therefore, when the

(Boltz) (Boltz)

violation oy 0511 s established experimentally
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FIG. 3. Nonlinear conductivity tensor o,z vs. Fermi energy
when MH — &, a® = 720 meVA, AV = 1€V, and T =
68 meV.
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FIG. 4. Nonlinear conductivity tensor o,z vs. Fermi energy
when MH — &, a® = 720 meVA, AV = 1€V, and T =
136 meV.

in a given material, one might consider this as an indi-
cation that one needs to go beyond the Boltzmann for-
malism with constant relaxation time approximation to
describe this effect theoretically.

In order to study the dependence of the UMR and of
the NLHE on the Fermi energy &r we show the nonlinear
conductivity tensor o,g, as a function of Fermi energy
when the Rashba parameter is o = 720 meVA and
when M points in the —z direction for the broadenings
I'=68 meV, ' =136 meV, I' = 272 meV, I' = 680 meV,
and I' = 1.36 eV, in Fig. Bl Fig. @ Fig. B Fig. 6 and
Fig. [ respectively. For these parameters the bandstruc-
ture of the Rashba model exhibits a crossing between
the first band and the second band at around 1.84 eV,
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FIG. 5. Nonlinear conductivity tensor o3~ vs. Fermi energy
when MH — &, a® = 720 meVA, AV = 1€V, and T =
272 meV.

and the band minimum of the first band is at -0.53 eV,
while the band minimum of the second band is at 0.47 eV.
These band structure properties are visible in Fig.[3 The
conductivities vanish below the band minimum of the
first band, where the density of states is zero. Around
1.84 eV, where the two bands cross, the conductivities
exhibit maxima. The NLHE components exhibit addi-
tional maxima around 0.47 eV, where the minimum of the
second band is located. These features start to change
qualitatively if the broadening I' increases towards the
scale of the energy spacing between these features. Since
we discussed the I'-dependence in Fig. 2l only based on a
single Fermi energy &, we discuss it now a second time
by comparing Fig. [} through Fig. [ in order to see if
qualitative features such as maxima, minima and zeros
in the curves are modified by I'. As discussed in Fig.
we expect that 0,5, o< 72 oc 72 when T is small. Based
on this scaling we expect an increase of 0,4, by a factor
of 4 when going from Fig. @ to Fig.[8l This expectation is
roughly satisfied and we attribute the deviations to the
size of I', which is not small enough to yield the exact
o I'"2 behaviour of the clean limit. At larger values of I'
this oc I'"2 rule becomes less and less predictive. For ex-
ample the curves in Fig. Bl and Fig. [l differ substantially
qualitatively.

Next, we investigate the dependence on the Rashba pa-
rameter ot. First, we fix the broadening to I' = 136 meV
and vary oft. Fig. Bl Fig.[@ Fig. d and Fig. [0 show the
nonlinear conductivity tensor for a® = 144 meVA, ot =
360 meVA, o = 720 meVA, and af = 1439 meVA,
respectively. Here, we observe that the maxima of 044+
increase stronger than linearly with o®. Comparing for
example Fig. @ and Fig. [0 we find that o217 and ogg9 in-
crease by roughly one order of magnitude when o is dou-
bled. In order to investigate this strong a®-dependence
in more detail we plot the tensor oag,/(a)? in Fig. [
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FIG. 6. Nonlinear conductivity tensor o,z vs. Fermi energy
when MH — &, a® = 720 meVA, AV = 1€V, and T =
680 meV.
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FIG. 7. Nonlinear conductivity tensor o,z vs. Fermi energy
when M| — é,, o = 720 meVA, AV =1 eV, and I' =
1.36 eV.

for the fixed Fermi energy of &r = 0. The division of the
nonlinear conductivity by the third power of the Rashba
parameter facilitates the illustration of the entire range
of a® considered here. The component caa2/(af)? de-
pends roughly linearly on o® in the range considered
in the figure. Consequently, in a coarse approximation
Oapy x () roughly predicts the trend in the range
considered in the figure. In contrast, the NLHE depends
less strongly on o at this particular Fermi energy and
consequently the components of gag,/(at)? that corre-
spond to the NLHE decrease with increasing o in the
range considered in the figure.

Finally, we study the dependence on the Rashba pa-
rameter af at large broadening I' and we set I' =
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FIG. 8. Nonlinear conductivity tensor o3~ vs. Fermi energy
when M| — é,, o = 144 meVA, AV = 1eV, and I' =
136 meV.
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FIG. 9. Nonlinear conductivity tensor o3~ vs. Fermi energy
when M| — é,, o = 360 meVA, AV = 1eV, and I' =
136 meV.

1.36 eV. We show the nonlinear conductivities for ot =
360 meVA, o = 1080 meVA, o = 1439 meVA, and
o = 2 ¢VA in Fig. [@ Fig. 03 Fig. 04 and Fig. [
When we compare Fig. [[4] and Fig. [l we observe that
0ap still increases stronger than linearly with o*. How-
ever, it does not increase as strongly as for I' = 136 meV
discussed in the preceding paragraph. This behaviour
is also illustrated in Fig. [0 which shows the nonlinear
conductivity as a function of the Rashba parameter ot
when the Fermi energy is set to &g = 0.

It is instructive to compare the magnitude of the
UMR and NLHE currents to the magnitude of the pho-
tocurrents induced at optical frequencies. According to
Ref. ﬂﬁ] laser pulses with 1.55 eV photon energy and in-
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FIG. 11. Tensor cap,/(a™)? vs. Rashba parameter o™ when
MH —é:, AV =1¢eV,E =0and I' = 136 meV. Results are
shown by symbols and the solid lines only serve as guide to
the eye.

tensity 10GW /cm? induce photocurrent densities of the
order of magnitude of A/m for Rashba parameters sim-
ilar to those considered here. The intensity 10GW /cm?
corresponds to the electric field strength of the laser field
of 2.7 MV/em. When this field strength induces a pho-
tocurrent of 1 A/m, the corresponding second order re-
sponse coefficient is 045, = A/m (2.7 MV /cm) ~?=1.37 x
1077 Am/V2. This is the same order of magnitude as
the response coefficients shown in Fig. [2] i.e., at very
large broadening of 1.36 eV. In contrast, we find a re-
sponse that is larger by three orders of magnitude at
small broadening I' = 68 meV shown in Fig. Since
the calculations in Ref. ﬂﬁ] used small broadenings, we
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FIG. 12. Nonlinear conductivity tensor g~ vs. Fermi energy
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FIG. 13. Nonlinear conductivity tensor g~ vs. Fermi energy
when M| — é,, o = 1080 meVA, AV =1 eV, and I' =
1.36 eV.

may conclude that the nonlinear conductivity at zero fre-
quency is several orders of magnitude larger than the one
at optical frequencies when the broadenings are com-
parable. This finding is consistent with the strong in-
crease and in some cases even divergent behaviour of the
quadratic response coefficients as w — 0 found in studies
of the inverse Faraday effect [28] and of the photocur-

rent m, 44, |_4__1|]

IV. SUMMARY

We derive the quadratic response of the electric current
to an applied electric field using two different formalisms:
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FIG. 14. Nonlinear conductivity tensor c,g~ vs. Fermi energy
when MH — &y, o = 1439 meVA, AV =1 eV, and T =
1.36 eV.
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The usual Keldysh nonequilibrium formalism and the
Moyal-Keldysh formalism. The latter approach solves
the difficulty of the non-periodic scalar potential asso-
ciated with a spatially homogeneous time-independent
electric field elegantly through the Moyal product. In
contrast, the former approach considers a spatially ho-
mogeneous time-dependent electric field instead, which
may be described by the vector potential, and the zero-
frequency limit needs to be taken at the end of the
derivation. We show that these two rather different ap-
proaches lead to numerically identical results in the fer-
romagnetic Rashba model, which corroborates their ap-
plicability to magnetic Hamiltonians with SOI. Since the



Moyal-Keldysh formalism yields the zero-frequency dc re-
sponse directly, it is presumably the most convenient ap-
proach for non-linear response coefficients of high order,
because taking the zero-frequency limit in the Keldysh
approach becomes more complex as the order of the
perturbation increases. When taking the zero-frequency
limit in the Keldysh approach we observe that the sec-
ond order dc conductivity is not identical to the zero-
frequency limit of the dc photocurrent expression, be-
cause the zero-frequency limit of the 2nd harmonic gen-
eration contributes to the second order dc conductivity
as well. Additionally, we compare our Keldysh expres-
sion in the clean limit analytically to the literature result
obtained from the Boltzmann formalism in the constant
relaxation time approximation, and find both formulae
to agree in this limit. We apply our quadratic response
expressions to the ferromagnetic Rashba model in order
to study UMR and NLHE. We find the UMR and the
NLHE to be of comparable magnitude in this model. Ad-
ditionally, they scale similarly with the Rashba strength
and the quasiparticle broadening. Compared to the re-
sponse tensor that describes the photocurrent generation
at optical frequencies, the zero-frequency effects consid-
ered here are several orders of magnitude larger when
the parameters in the Rashba parameter are chosen sim-
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ilarly. Our quadratic response expressions are also well-
suited to study UMR and NLHE within a first-principles
density-functional theory framework.
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is given by
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determines the contribution that is proportional to the
energy-derivative of the Fermi function f/(£) = df/9€,
and
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determines the contribution that is proportional to the
second energy-derivative of the Fermi function f”(&) =
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In the Gaussian disorder approximation we determine
the self energies from the equations [3(]

dPk
n# _ n,#

(A7)
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y# =P Ak G (A8)
E; (27T)D E; >
and
dPk
Sk, = V/ WG%ijv (A9)

where V quantifies the strength of the disorder scatter-
ing and n = R, A, <. If n #< we leave # blank, other-
wise # = I,II, III. Since the Green functions G"#, GE#
and G%#EJ depend on the self-energies L% E%’i#, and
E%’ij, the equations Eq. (A7), Eq. (A8) and Eq. (A9)
need to be solved self-consistently. It is straightforward

to extend these expressions into the T-matrix approxi-
mation [30].



