001     904007
005     20240711085626.0
024 7 _ |a 10.1111/jace.17614
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a 2128/30011
|2 Handle
024 7 _ |a WOS:000608699300001
|2 WOS
037 _ _ |a FZJ-2021-05577
082 _ _ |a 660
100 1 _ |a Sistla, Sree Koundinya
|0 0000-0002-6925-7854
|b 0
|e Corresponding author
245 _ _ |a Polarity‐induced grain growth of gadolinium‐doped ceria under field‐assisted sintering technology/spark plasma sintering (FAST/SPS) conditions
260 _ _ |a Westerville, Ohio
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648124966_1595
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study aims to understand the effect of the electrical field on microstructure evolution during field-assisted sintering or spark plasma sintering (FAST/SPS) of 10 mol% gadolinium-doped ceria (GDC) with experimental and numerical methods. The novelty of this study has been the observation of enhanced grain growth in the region closer to the anode, even under FAST/SPS conditions with electrical fields less than 5 V/cm. The grain growth kinetics, including determination of activation energy and grain-boundary mobility, were analyzed along the cross section of the samples for different temperatures and dwell periods. With an increase in distance from the anode, reduction in the activation energy for grain growth and grain-boundary mobility was observed. These observations attributed to the attraction of oxygen ions to the anode region under an electrical field with an increase in defects along the grain boundaries. Thereby an increase in the grain-boundary mobility and larger grains in that region were observed. A homogenous microstructure was observed in a case where the current did not flow through the sample. Furthermore, a numerical strategy has also been developed to simulate this behavior in addition to heat generation, heat transfer, and densification using Finite Element Methods (FEM) simulations. The simulation results provided an insight into the presence of a potential difference across the cross section of the samples. The simulation results were also in good agreement with the experimental observations.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mishra, Tarini Prasad
|0 P:(DE-Juel1)166597
|b 1
700 1 _ |a Deng, Yuanbin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kaletsch, Anke
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 4
|u fzj
700 1 _ |a Broeckmann, Christoph
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1111/jace.17614
|g Vol. 104, no. 5, p. 1978 - 1996
|0 PERI:(DE-600)2008170-4
|n 5
|p 1978 - 1996
|t Journal of the American Ceramic Society
|v 104
|y 2021
|x 0002-7820
856 4 _ |u https://juser.fz-juelich.de/record/904007/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202020%20-%20Sistla%20-%20Polarity%25u2010induced%20grain%20growth%20of%20gadolinium%25u2010doped%20ceria%20under.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904007
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166597
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2019
|d 2021-01-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21