000904008 001__ 904008
000904008 005__ 20240711085626.0
000904008 0247_ $$2doi$$a10.1039/D0TA07508F
000904008 0247_ $$2ISSN$$a2050-7488
000904008 0247_ $$2ISSN$$a2050-7496
000904008 0247_ $$2Handle$$a2128/29979
000904008 0247_ $$2altmetric$$aaltmetric:100695542
000904008 0247_ $$2WOS$$aWOS:000609149500021
000904008 037__ $$aFZJ-2021-05578
000904008 082__ $$a530
000904008 1001_ $$00000-0002-0098-4156$$aSong, Jia$$b0
000904008 245__ $$aDefect chemistry and transport properties of perovskite-type oxides La 1−x Ca x FeO 3−δ
000904008 260__ $$aLondon [u.a.]$$bRSC$$c2021
000904008 3367_ $$2DRIVER$$aarticle
000904008 3367_ $$2DataCite$$aOutput Types/Journal article
000904008 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641547818_11384
000904008 3367_ $$2BibTeX$$aARTICLE
000904008 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904008 3367_ $$00$$2EndNote$$aJournal Article
000904008 520__ $$aStructural evolution, electrical conductivity, oxygen nonstoichiometry and oxygen transport properties of perovskite-type oxides La1−xCaxFeO3−δ (x = 0.05, 0.10, 0.15, 0.20, 0.30 and 0.40) are investigated. All investigated compositions exhibit, under ambient air, a phase transition from room-temperature orthorhombic (space group Pbnm) to rhombohedral (space group R[3 with combining macron]c) at elevated temperature. The transition temperature is found to decrease gradually from 900 °C for x = 0.05 to 625 °C for x = 0.40. Analysis of the data of oxygen nonstoichiometry obtained by thermogravimetry shows that under the given experimental conditions the Ca dopant is predominantly compensated by formation of electron holes rather than by oxygen vacancies. Maximum electrical conductivity under air is found for the composition with x = 0.30 (123 S cm−1 at 650 °C). Analysis of the temperature dependence of the mobility of the electron holes in terms of Emin–Holstein's theory indicates that small polaron theory fails for the compositions with high Ca contents x = 0.30 and x = 0.40. This is tentatively explained by the increased delocalization of charge carriers with increasing Ca dopant concentration. The oxygen transport properties of La1−xCaxFeO3−δ in the range 650–900 °C are evaluated using the electrical conductivity relaxation (ECR) technique. Combined with data of oxygen non-stoichiometry, the obtained results enable calculation of the oxygen vacancy diffusion coefficient and associated ionic conductivity. Both parameters increase with increasing Ca content in La1−xCaxFeO3−δ, while it is found that the effective migration barrier for oxygen diffusion decreases with decreasing oxygen vacancy formation enthalpy.
000904008 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904008 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904008 7001_ $$00000-0001-5998-4954$$aZhu, Shaochen$$b1
000904008 7001_ $$0P:(DE-HGF)0$$aNing, De$$b2
000904008 7001_ $$0P:(DE-Juel1)177619$$aBouwmeester, Henny$$b3$$eCorresponding author
000904008 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D0TA07508F$$gVol. 9, no. 2, p. 974 - 989$$n2$$p974 - 989$$tJournal of materials chemistry / A$$v9$$x2050-7488$$y2021
000904008 8564_ $$uhttps://juser.fz-juelich.de/record/904008/files/d0ta07508f.pdf$$yOpenAccess
000904008 909CO $$ooai:juser.fz-juelich.de:904008$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904008 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177619$$aForschungszentrum Jülich$$b3$$kFZJ
000904008 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904008 9141_ $$y2021
000904008 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904008 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904008 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000904008 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904008 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000904008 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000904008 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904008 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2019$$d2021-01-28
000904008 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904008 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger
000904008 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2019$$d2021-01-28
000904008 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000904008 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904008 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904008 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000904008 9801_ $$aFullTexts
000904008 980__ $$ajournal
000904008 980__ $$aVDB
000904008 980__ $$aUNRESTRICTED
000904008 980__ $$aI:(DE-Juel1)IEK-1-20101013
000904008 981__ $$aI:(DE-Juel1)IMD-2-20101013