001     904008
005     20240711085626.0
024 7 _ |a 10.1039/D0TA07508F
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 2128/29979
|2 Handle
024 7 _ |a altmetric:100695542
|2 altmetric
024 7 _ |a WOS:000609149500021
|2 WOS
037 _ _ |a FZJ-2021-05578
082 _ _ |a 530
100 1 _ |a Song, Jia
|0 0000-0002-0098-4156
|b 0
245 _ _ |a Defect chemistry and transport properties of perovskite-type oxides La 1−x Ca x FeO 3−δ
260 _ _ |a London ˜[u.a.]œ
|c 2021
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641547818_11384
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Structural evolution, electrical conductivity, oxygen nonstoichiometry and oxygen transport properties of perovskite-type oxides La1−xCaxFeO3−δ (x = 0.05, 0.10, 0.15, 0.20, 0.30 and 0.40) are investigated. All investigated compositions exhibit, under ambient air, a phase transition from room-temperature orthorhombic (space group Pbnm) to rhombohedral (space group R[3 with combining macron]c) at elevated temperature. The transition temperature is found to decrease gradually from 900 °C for x = 0.05 to 625 °C for x = 0.40. Analysis of the data of oxygen nonstoichiometry obtained by thermogravimetry shows that under the given experimental conditions the Ca dopant is predominantly compensated by formation of electron holes rather than by oxygen vacancies. Maximum electrical conductivity under air is found for the composition with x = 0.30 (123 S cm−1 at 650 °C). Analysis of the temperature dependence of the mobility of the electron holes in terms of Emin–Holstein's theory indicates that small polaron theory fails for the compositions with high Ca contents x = 0.30 and x = 0.40. This is tentatively explained by the increased delocalization of charge carriers with increasing Ca dopant concentration. The oxygen transport properties of La1−xCaxFeO3−δ in the range 650–900 °C are evaluated using the electrical conductivity relaxation (ECR) technique. Combined with data of oxygen non-stoichiometry, the obtained results enable calculation of the oxygen vacancy diffusion coefficient and associated ionic conductivity. Both parameters increase with increasing Ca content in La1−xCaxFeO3−δ, while it is found that the effective migration barrier for oxygen diffusion decreases with decreasing oxygen vacancy formation enthalpy.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhu, Shaochen
|0 0000-0001-5998-4954
|b 1
700 1 _ |a Ning, De
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bouwmeester, Henny
|0 P:(DE-Juel1)177619
|b 3
|e Corresponding author
773 _ _ |a 10.1039/D0TA07508F
|g Vol. 9, no. 2, p. 974 - 989
|0 PERI:(DE-600)2702232-8
|n 2
|p 974 - 989
|t Journal of materials chemistry / A
|v 9
|y 2021
|x 2050-7488
856 4 _ |u https://juser.fz-juelich.de/record/904008/files/d0ta07508f.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904008
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177619
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2019
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21