000904013 001__ 904013
000904013 005__ 20240711085630.0
000904013 0247_ $$2doi$$a10.1088/1361-6528/abcb2f
000904013 0247_ $$2ISSN$$a0957-4484
000904013 0247_ $$2ISSN$$a1361-6528
000904013 0247_ $$2Handle$$a2128/31222
000904013 0247_ $$2pmid$$a33202392
000904013 0247_ $$2WOS$$aWOS:000596444000001
000904013 037__ $$aFZJ-2021-05583
000904013 082__ $$a530
000904013 1001_ $$00000-0001-9950-9445$$aPhuah, Xin Li$$b0
000904013 245__ $$aField-assisted growth of one-dimensional ZnO nanostructures with high defect density
000904013 260__ $$aBristol$$bIOP Publ.$$c2021
000904013 3367_ $$2DRIVER$$aarticle
000904013 3367_ $$2DataCite$$aOutput Types/Journal article
000904013 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653379750_24464
000904013 3367_ $$2BibTeX$$aARTICLE
000904013 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904013 3367_ $$00$$2EndNote$$aJournal Article
000904013 520__ $$aOne-dimensional ZnO nanostructures have shown great potential in electronics, optoelectronics and electromechanical devices owing to their unique physical and chemical properties. Most of these nanostructures were grown by equilibrium processes where the defects density is controlled by thermodynamic equilibrium. In this work, flash sintering, a non-equilibrium field-assisted processing method, has been used to synthesize ZnO nanostructures. By applying a high electric field and limiting a low current flow, ZnO nanorods grew uniformly by a vapor-liquid-solid mechanism due to the extreme temperatures achieved near the hot spot. High density basal stacking faults in the nanorods along with ultraviolet excitonic emission and a red emission under room temperature demonstrate the potential of defect engineering in nanostructures via the field-assisted growth method.
000904013 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000904013 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904013 7001_ $$0P:(DE-HGF)0$$aCho, Jaehun$$b1
000904013 7001_ $$0P:(DE-HGF)0$$aAkriti$$b2
000904013 7001_ $$00000-0001-6411-8591$$aDou, Letian$$b3
000904013 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b4
000904013 7001_ $$00000-0002-4983-604X$$aGarcía, R Edwin$$b5
000904013 7001_ $$00000-0002-8380-8667$$aZhang, Xinghang$$b6
000904013 7001_ $$00000-0002-7397-1209$$aWang, Haiyan$$b7$$eCorresponding author
000904013 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/abcb2f$$gVol. 32, no. 9, p. 095603 -$$n9$$p095603 -$$tNanotechnology$$v32$$x0957-4484$$y2021
000904013 8564_ $$uhttps://juser.fz-juelich.de/record/904013/files/Field-Assisted%20growth.pdf$$yPublished on 2020-12-07. Available in OpenAccess from 2021-12-07.
000904013 8564_ $$uhttps://juser.fz-juelich.de/record/904013/files/Phuah_2021_Nanotechnology_32_095603.pdf$$yRestricted
000904013 909CO $$ooai:juser.fz-juelich.de:904013$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b4$$kFZJ
000904013 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000904013 9141_ $$y2022
000904013 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904013 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904013 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904013 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2019$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000904013 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904013 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000904013 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904013 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000904013 9801_ $$aFullTexts
000904013 980__ $$ajournal
000904013 980__ $$aVDB
000904013 980__ $$aUNRESTRICTED
000904013 980__ $$aI:(DE-Juel1)IEK-1-20101013
000904013 981__ $$aI:(DE-Juel1)IMD-2-20101013