Hauptseite > Publikationsdatenbank > Field-assisted growth of one-dimensional ZnO nanostructures with high defect density > print |
001 | 904013 | ||
005 | 20240711085630.0 | ||
024 | 7 | _ | |a 10.1088/1361-6528/abcb2f |2 doi |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a 2128/31222 |2 Handle |
024 | 7 | _ | |a 33202392 |2 pmid |
024 | 7 | _ | |a WOS:000596444000001 |2 WOS |
037 | _ | _ | |a FZJ-2021-05583 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Phuah, Xin Li |0 0000-0001-9950-9445 |b 0 |
245 | _ | _ | |a Field-assisted growth of one-dimensional ZnO nanostructures with high defect density |
260 | _ | _ | |a Bristol |c 2021 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1653379750_24464 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a One-dimensional ZnO nanostructures have shown great potential in electronics, optoelectronics and electromechanical devices owing to their unique physical and chemical properties. Most of these nanostructures were grown by equilibrium processes where the defects density is controlled by thermodynamic equilibrium. In this work, flash sintering, a non-equilibrium field-assisted processing method, has been used to synthesize ZnO nanostructures. By applying a high electric field and limiting a low current flow, ZnO nanorods grew uniformly by a vapor-liquid-solid mechanism due to the extreme temperatures achieved near the hot spot. High density basal stacking faults in the nanorods along with ultraviolet excitonic emission and a red emission under room temperature demonstrate the potential of defect engineering in nanostructures via the field-assisted growth method. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Cho, Jaehun |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Akriti |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Dou, Letian |0 0000-0001-6411-8591 |b 3 |
700 | 1 | _ | |a Rheinheimer, Wolfgang |0 P:(DE-Juel1)185039 |b 4 |
700 | 1 | _ | |a García, R Edwin |0 0000-0002-4983-604X |b 5 |
700 | 1 | _ | |a Zhang, Xinghang |0 0000-0002-8380-8667 |b 6 |
700 | 1 | _ | |a Wang, Haiyan |0 0000-0002-7397-1209 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1088/1361-6528/abcb2f |g Vol. 32, no. 9, p. 095603 - |0 PERI:(DE-600)1362365-5 |n 9 |p 095603 - |t Nanotechnology |v 32 |y 2021 |x 0957-4484 |
856 | 4 | _ | |y Published on 2020-12-07. Available in OpenAccess from 2021-12-07. |u https://juser.fz-juelich.de/record/904013/files/Field-Assisted%20growth.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/904013/files/Phuah_2021_Nanotechnology_32_095603.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:904013 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)185039 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-30 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOTECHNOLOGY : 2019 |d 2021-01-30 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|