000904014 001__ 904014
000904014 005__ 20240711085626.0
000904014 0247_ $$2doi$$a10.1002/celc.202100189
000904014 0247_ $$2Handle$$a2128/31213
000904014 0247_ $$2altmetric$$aaltmetric:106169606
000904014 0247_ $$2WOS$$aWOS:000664255800014
000904014 037__ $$aFZJ-2021-05584
000904014 082__ $$a540
000904014 1001_ $$0P:(DE-HGF)0$$aXu, Pengyu$$b0
000904014 245__ $$aOrigin of High Interfacial Resistance in Solid‐State Batteries: LLTO/LCO Half‐Cells**
000904014 260__ $$aWeinheim$$bWiley-VCH$$c2021
000904014 3367_ $$2DRIVER$$aarticle
000904014 3367_ $$2DataCite$$aOutput Types/Journal article
000904014 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653369609_22539
000904014 3367_ $$2BibTeX$$aARTICLE
000904014 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904014 3367_ $$00$$2EndNote$$aJournal Article
000904014 520__ $$aThe interface between cathode and electrolyte is a significant source of large interfacial resistance in solid-state batteries (SSBs). Spark plasma sintering (SPS) allows densifying electrolyte and electrodes in one step, which can improve the interfacial contact in SSBs and significantly shorten the processing time. In this work, we proposed a two-step joining process to prepare cathode (LiCoO2, LCO)/electrolyte (Li0.33La0.57TiO3, LLTO) half cells via SPS. Interdiffusion between Ti4+/Co3+ was observed at the interface by SEM/STEM, resulting in the formation of the Li−Ti−La−Co−O and Li−Ti−Co−O phases in LLTO and the Li−Co−Ti−O phase in LCO. Computational modeling was performed to verify that the Li−Ti−Co−O phase has a LiTi2O4 host lattice. In a study of interfacial electrical properties, the resistance of this interdiffusion layer was found to be 105 Ω, which is 40 times higher than the resistance of the individual LLTO phase. The formation of an interdiffusion layer is identified as the origin of the high interface resistance in the LLTO/LCO half-cell.
000904014 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000904014 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
000904014 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904014 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b1$$ufzj
000904014 7001_ $$0P:(DE-HGF)0$$aMishra, Avanish$$b2
000904014 7001_ $$0P:(DE-HGF)0$$aShuvo, Shoumya Nandy$$b3
000904014 7001_ $$0P:(DE-HGF)0$$aQi, Zhimin$$b4
000904014 7001_ $$0P:(DE-HGF)0$$aWang, Haiyan$$b5
000904014 7001_ $$0P:(DE-HGF)0$$aDongare, Avinash M.$$b6
000904014 7001_ $$00000-0001-6059-0346$$aStanciu, Lia A.$$b7$$eCorresponding author
000904014 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.202100189$$gVol. 8, no. 10, p. 1847 - 1857$$n10$$p1847 - 1857$$tChemElectroChem$$v8$$x2196-0216$$y2021
000904014 8564_ $$uhttps://juser.fz-juelich.de/record/904014/files/ChemElectroChem%20-%202021%20-%20Xu%20-%20Origin%20of%20High%20Interfacial%20Resistance%20in%20Solid%25u2010State%20Batteries%20LLTO%20LCO%20Half%25u2010Cells.pdf$$yRestricted
000904014 8564_ $$uhttps://juser.fz-juelich.de/record/904014/files/Origin%20of%20High%20Interfacial%20Resistance.pdf$$yPublished on 2021-04-12. Available in OpenAccess from 2022-04-12.
000904014 909CO $$ooai:juser.fz-juelich.de:904014$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b1$$kFZJ
000904014 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000904014 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
000904014 9141_ $$y2022
000904014 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904014 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000904014 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904014 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2019$$d2021-01-27
000904014 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000904014 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904014 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904014 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904014 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904014 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904014 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904014 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000904014 9801_ $$aFullTexts
000904014 980__ $$ajournal
000904014 980__ $$aVDB
000904014 980__ $$aUNRESTRICTED
000904014 980__ $$aI:(DE-Juel1)IEK-1-20101013
000904014 981__ $$aI:(DE-Juel1)IMD-2-20101013