001     904014
005     20240711085626.0
024 7 _ |a 10.1002/celc.202100189
|2 doi
024 7 _ |a 2128/31213
|2 Handle
024 7 _ |a altmetric:106169606
|2 altmetric
024 7 _ |a WOS:000664255800014
|2 WOS
037 _ _ |a FZJ-2021-05584
082 _ _ |a 540
100 1 _ |a Xu, Pengyu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Origin of High Interfacial Resistance in Solid‐State Batteries: LLTO/LCO Half‐Cells**
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653369609_22539
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interface between cathode and electrolyte is a significant source of large interfacial resistance in solid-state batteries (SSBs). Spark plasma sintering (SPS) allows densifying electrolyte and electrodes in one step, which can improve the interfacial contact in SSBs and significantly shorten the processing time. In this work, we proposed a two-step joining process to prepare cathode (LiCoO2, LCO)/electrolyte (Li0.33La0.57TiO3, LLTO) half cells via SPS. Interdiffusion between Ti4+/Co3+ was observed at the interface by SEM/STEM, resulting in the formation of the Li−Ti−La−Co−O and Li−Ti−Co−O phases in LLTO and the Li−Co−Ti−O phase in LCO. Computational modeling was performed to verify that the Li−Ti−Co−O phase has a LiTi2O4 host lattice. In a study of interfacial electrical properties, the resistance of this interdiffusion layer was found to be 105 Ω, which is 40 times higher than the resistance of the individual LLTO phase. The formation of an interdiffusion layer is identified as the origin of the high interface resistance in the LLTO/LCO half-cell.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rheinheimer, Wolfgang
|0 P:(DE-Juel1)185039
|b 1
|u fzj
700 1 _ |a Mishra, Avanish
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Shuvo, Shoumya Nandy
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Qi, Zhimin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wang, Haiyan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dongare, Avinash M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stanciu, Lia A.
|0 0000-0001-6059-0346
|b 7
|e Corresponding author
773 _ _ |a 10.1002/celc.202100189
|g Vol. 8, no. 10, p. 1847 - 1857
|0 PERI:(DE-600)2724978-5
|n 10
|p 1847 - 1857
|t ChemElectroChem
|v 8
|y 2021
|x 2196-0216
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/904014/files/ChemElectroChem%20-%202021%20-%20Xu%20-%20Origin%20of%20High%20Interfacial%20Resistance%20in%20Solid%25u2010State%20Batteries%20LLTO%20LCO%20Half%25u2010Cells.pdf
856 4 _ |y Published on 2021-04-12. Available in OpenAccess from 2022-04-12.
|u https://juser.fz-juelich.de/record/904014/files/Origin%20of%20High%20Interfacial%20Resistance.pdf
909 C O |o oai:juser.fz-juelich.de:904014
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185039
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMELECTROCHEM : 2019
|d 2021-01-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21