Home > Publications database > Origin of High Interfacial Resistance in Solid‐State Batteries: LLTO/LCO Half‐Cells** > print |
001 | 904014 | ||
005 | 20240711085626.0 | ||
024 | 7 | _ | |a 10.1002/celc.202100189 |2 doi |
024 | 7 | _ | |a 2128/31213 |2 Handle |
024 | 7 | _ | |a altmetric:106169606 |2 altmetric |
024 | 7 | _ | |a WOS:000664255800014 |2 WOS |
037 | _ | _ | |a FZJ-2021-05584 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Xu, Pengyu |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Origin of High Interfacial Resistance in Solid‐State Batteries: LLTO/LCO Half‐Cells** |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1653369609_22539 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The interface between cathode and electrolyte is a significant source of large interfacial resistance in solid-state batteries (SSBs). Spark plasma sintering (SPS) allows densifying electrolyte and electrodes in one step, which can improve the interfacial contact in SSBs and significantly shorten the processing time. In this work, we proposed a two-step joining process to prepare cathode (LiCoO2, LCO)/electrolyte (Li0.33La0.57TiO3, LLTO) half cells via SPS. Interdiffusion between Ti4+/Co3+ was observed at the interface by SEM/STEM, resulting in the formation of the Li−Ti−La−Co−O and Li−Ti−Co−O phases in LLTO and the Li−Co−Ti−O phase in LCO. Computational modeling was performed to verify that the Li−Ti−Co−O phase has a LiTi2O4 host lattice. In a study of interfacial electrical properties, the resistance of this interdiffusion layer was found to be 105 Ω, which is 40 times higher than the resistance of the individual LLTO phase. The formation of an interdiffusion layer is identified as the origin of the high interface resistance in the LLTO/LCO half-cell. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Rheinheimer, Wolfgang |0 P:(DE-Juel1)185039 |b 1 |u fzj |
700 | 1 | _ | |a Mishra, Avanish |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Shuvo, Shoumya Nandy |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Qi, Zhimin |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Wang, Haiyan |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Dongare, Avinash M. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Stanciu, Lia A. |0 0000-0001-6059-0346 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1002/celc.202100189 |g Vol. 8, no. 10, p. 1847 - 1857 |0 PERI:(DE-600)2724978-5 |n 10 |p 1847 - 1857 |t ChemElectroChem |v 8 |y 2021 |x 2196-0216 |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/904014/files/ChemElectroChem%20-%202021%20-%20Xu%20-%20Origin%20of%20High%20Interfacial%20Resistance%20in%20Solid%25u2010State%20Batteries%20LLTO%20LCO%20Half%25u2010Cells.pdf |
856 | 4 | _ | |y Published on 2021-04-12. Available in OpenAccess from 2022-04-12. |u https://juser.fz-juelich.de/record/904014/files/Origin%20of%20High%20Interfacial%20Resistance.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:904014 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)185039 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-27 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEMELECTROCHEM : 2019 |d 2021-01-27 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|