000904019 001__ 904019
000904019 005__ 20240711092247.0
000904019 0247_ $$2doi$$a10.1007/s10853-020-05749-2
000904019 0247_ $$2ISSN$$a0022-2461
000904019 0247_ $$2ISSN$$a1573-4803
000904019 0247_ $$2datacite_doi$$a10.34734/FZJ-2021-05589
000904019 0247_ $$2WOS$$aWOS:000612376700002
000904019 037__ $$aFZJ-2021-05589
000904019 082__ $$a670
000904019 1001_ $$00000-0001-7951-7640$$aDuarte, M. J.$$b0$$eCorresponding author
000904019 245__ $$aIn situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach
000904019 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2021
000904019 3367_ $$2DRIVER$$aarticle
000904019 3367_ $$2DataCite$$aOutput Types/Journal article
000904019 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714568577_3667
000904019 3367_ $$2BibTeX$$aARTICLE
000904019 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904019 3367_ $$00$$2EndNote$$aJournal Article
000904019 520__ $$aThe effects of hydrogen in metals are a pressing issue causing severe economic losses due to material deterioration by hydrogen embrittlement. A crucial understanding of the interactions of hydrogen with different microstructure features can be reached by nanoindentation due to the small volumes probed. Even more, in situ testing while charging the sample with hydrogen prevents the formation of concentration gradients due to hydrogen desorption. Two custom electrochemical cells for in situ testing were built in-house to charge the sample with hydrogen during nanoindentation: “front-side” charging with the sample and the indenter tip immersed into the electrolyte, and “back-side” charging where the analyzed region is never in contact with the solution. During front-side charging, surface degradation often occurs which also negatively influences analyses after hydrogen charging. The back-side charging approach proposed in this work is a promising technique for studying in situ the effects of hydrogen in alloys under mechanical loads, while completely excluding the influence of the electrolyte on the nanoindented surface. Hydrogen diffusion from the charged back-side toward the testing surface is here demonstrated by Kelvin probe measurements in ferritic FeCr alloys, used as a case study due to the high mobility of hydrogen in the bcc lattice. During nanoindentation, a reduction on the shear stress necessary for dislocations nucleation due to hydrogen was observed using both setups; however, the quantitative data differs and a contradictory behavior was found in hardness measurements. Finally, some guidelines for the use of both approaches and a summary of their advantages and disadvantages are presented.
000904019 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904019 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904019 7001_ $$0P:(DE-HGF)0$$aFang, X.$$b1
000904019 7001_ $$0P:(DE-HGF)0$$aRao, J.$$b2
000904019 7001_ $$0P:(DE-HGF)0$$aKrieger, W.$$b3
000904019 7001_ $$0P:(DE-Juel1)164854$$aBrinckmann, S.$$b4
000904019 7001_ $$00000-0003-1601-8267$$aDehm, G.$$b5
000904019 773__ $$0PERI:(DE-600)2015305-3$$a10.1007/s10853-020-05749-2$$gVol. 56, no. 14, p. 8732 - 8744$$n14$$p8732 - 8744$$tJournal of materials science$$v56$$x0022-2461$$y2021
000904019 8564_ $$uhttps://juser.fz-juelich.de/record/904019/files/Duarte2021_Article_InSituNanoindentationDuringEle.pdf$$yOpenAccess
000904019 909CO $$ooai:juser.fz-juelich.de:904019$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164854$$aForschungszentrum Jülich$$b4$$kFZJ
000904019 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904019 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-30
000904019 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904019 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000904019 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904019 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER SCI : 2019$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904019 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000904019 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904019 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000904019 9801_ $$aFullTexts
000904019 980__ $$ajournal
000904019 980__ $$aVDB
000904019 980__ $$aUNRESTRICTED
000904019 980__ $$aI:(DE-Juel1)IEK-2-20101013
000904019 981__ $$aI:(DE-Juel1)IMD-1-20101013