000904020 001__ 904020
000904020 005__ 20240709094344.0
000904020 0247_ $$2doi$$a10.1016/j.intermet.2020.107025
000904020 0247_ $$2ISSN$$a0966-9795
000904020 0247_ $$2ISSN$$a1879-0216
000904020 0247_ $$2WOS$$aWOS:000596079900004
000904020 037__ $$aFZJ-2021-05590
000904020 082__ $$a670
000904020 1001_ $$0P:(DE-HGF)0$$aFichtner, D.$$b0$$eCorresponding author
000904020 245__ $$aAdditive manufacturing of a near-eutectic Mo–Si–B alloy: Processing and resulting properties
000904020 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000904020 3367_ $$2DRIVER$$aarticle
000904020 3367_ $$2DataCite$$aOutput Types/Journal article
000904020 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714586259_11807
000904020 3367_ $$2BibTeX$$aARTICLE
000904020 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904020 3367_ $$00$$2EndNote$$aJournal Article
000904020 520__ $$aThis paper presents the first comprehensive study on additive manufacturing of a high-melting near-eutectic Mo–Si–B alloy by laser powder bed fusion (L-PBF). An overview about the ambient and high temperature material properties of a Mo-16.5Si-7.5B alloy is given. Therefore, the near-eutectic Mo–Si–B alloy was gas atomized and the powder was analyzed. After developing suitable process parameters for the generation of crack-free samples, the microstructure of the L-PBF material was analyzed in detail using SEM/EDS and EBSD analyses. In terms of mechanical properties, the brittle-to-ductile transformation temperature (BDTT) and the creep rate at a potential application temperature were determined.
000904020 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000904020 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904020 7001_ $$0P:(DE-HGF)0$$aSchmelzer, J.$$b1
000904020 7001_ $$0P:(DE-Juel1)176123$$aYang, Weiguang$$b2$$ufzj
000904020 7001_ $$0P:(DE-HGF)0$$aHeinze, C.$$b3
000904020 7001_ $$0P:(DE-Juel1)172056$$aKrüger, Manja$$b4
000904020 773__ $$0PERI:(DE-600)2028968-6$$a10.1016/j.intermet.2020.107025$$gVol. 128, p. 107025 -$$p107025 -$$tIntermetallics$$v128$$x0966-9795$$y2021
000904020 909CO $$ooai:juser.fz-juelich.de:904020$$pVDB
000904020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176123$$aForschungszentrum Jülich$$b2$$kFZJ
000904020 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000904020 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINTERMETALLICS : 2019$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904020 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000904020 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000904020 980__ $$ajournal
000904020 980__ $$aVDB
000904020 980__ $$aI:(DE-Juel1)IEK-2-20101013
000904020 980__ $$aUNRESTRICTED
000904020 981__ $$aI:(DE-Juel1)IMD-1-20101013