001     904020
005     20240709094344.0
024 7 _ |a 10.1016/j.intermet.2020.107025
|2 doi
024 7 _ |a 0966-9795
|2 ISSN
024 7 _ |a 1879-0216
|2 ISSN
024 7 _ |a WOS:000596079900004
|2 WOS
037 _ _ |a FZJ-2021-05590
082 _ _ |a 670
100 1 _ |a Fichtner, D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Additive manufacturing of a near-eutectic Mo–Si–B alloy: Processing and resulting properties
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714586259_11807
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper presents the first comprehensive study on additive manufacturing of a high-melting near-eutectic Mo–Si–B alloy by laser powder bed fusion (L-PBF). An overview about the ambient and high temperature material properties of a Mo-16.5Si-7.5B alloy is given. Therefore, the near-eutectic Mo–Si–B alloy was gas atomized and the powder was analyzed. After developing suitable process parameters for the generation of crack-free samples, the microstructure of the L-PBF material was analyzed in detail using SEM/EDS and EBSD analyses. In terms of mechanical properties, the brittle-to-ductile transformation temperature (BDTT) and the creep rate at a potential application temperature were determined.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schmelzer, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yang, Weiguang
|0 P:(DE-Juel1)176123
|b 2
|u fzj
700 1 _ |a Heinze, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krüger, Manja
|0 P:(DE-Juel1)172056
|b 4
773 _ _ |a 10.1016/j.intermet.2020.107025
|g Vol. 128, p. 107025 -
|0 PERI:(DE-600)2028968-6
|p 107025 -
|t Intermetallics
|v 128
|y 2021
|x 0966-9795
909 C O |o oai:juser.fz-juelich.de:904020
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INTERMETALLICS : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21