000904022 001__ 904022
000904022 005__ 20240711092243.0
000904022 0247_ $$2doi$$a10.1557/s43578-021-00285-4
000904022 0247_ $$2ISSN$$a0884-1616
000904022 0247_ $$2ISSN$$a0884-2914
000904022 0247_ $$2ISSN$$a2044-5326
000904022 0247_ $$2datacite_doi$$a10.34734/FZJ-2021-05592
000904022 0247_ $$2WOS$$aWOS:000672835300001
000904022 037__ $$aFZJ-2021-05592
000904022 082__ $$a670
000904022 1001_ $$0P:(DE-HGF)0$$aNandam, Sree Harsha$$b0$$eCorresponding author
000904022 245__ $$aControlling shear band instability by nanoscale heterogeneities in metallic nanoglasses
000904022 260__ $$aCambridge [u.a.]$$bCambridge Univ. Press$$c2021
000904022 3367_ $$2DRIVER$$aarticle
000904022 3367_ $$2DataCite$$aOutput Types/Journal article
000904022 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714556347_3947
000904022 3367_ $$2BibTeX$$aARTICLE
000904022 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904022 3367_ $$00$$2EndNote$$aJournal Article
000904022 520__ $$aStrain localization during plastic deformation drastically reduces the shear band stability in metallic glasses, ultimately leading to catastrophic failure. Therefore, improving the plasticity of metallic glasses has been a long-standing goal for several decades. In this regard, nanoglass, a novel type of metallic glass, has been proposed to exhibit differences in short and medium range order at the interfacial regions, which could promote the formation of shear transformation zones. In the present work, by introducing heterogeneities at the nanoscale, both crystalline and amorphous, significant improvements in plasticity are realized in micro-compression tests. Both amorphous and crystalline dispersions resulted in smaller strain bursts during plastic deformation. The yield strength is found to increase significantly in Cu–Zr nanoglasses compared to the corresponding conventional metallic glasses. The reasons for the mechanical behavior and the importance of nanoscale dispersions to tailor the properties is discussed in detail.
000904022 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904022 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904022 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b1$$eCorresponding author$$ufzj
000904022 7001_ $$0P:(DE-HGF)0$$aKobler, Aaron$$b2
000904022 7001_ $$0P:(DE-HGF)0$$aKübel, Christian$$b3
000904022 7001_ $$0P:(DE-HGF)0$$aWang, Chaomin$$b4
000904022 7001_ $$0P:(DE-HGF)0$$aIvanisenko, Yulia$$b5
000904022 7001_ $$0P:(DE-HGF)0$$aHahn, Horst$$b6
000904022 773__ $$0PERI:(DE-600)2015297-8$$a10.1557/s43578-021-00285-4$$gVol. 36, no. 14, p. 2903 - 2914$$n14$$p2903 - 2914$$tJournal of materials research$$v36$$x0884-1616$$y2021
000904022 8564_ $$uhttps://juser.fz-juelich.de/record/904022/files/Nandam2021_Article_ControllingShearBandInstabilit.pdf$$yOpenAccess
000904022 909CO $$ooai:juser.fz-juelich.de:904022$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b1$$kFZJ
000904022 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000904022 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000904022 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904022 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000904022 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000904022 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904022 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904022 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES : 2019$$d2021-02-03
000904022 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000904022 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000904022 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000904022 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-03$$wger
000904022 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000904022 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-03
000904022 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000904022 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000904022 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000904022 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000904022 9801_ $$aFullTexts
000904022 980__ $$ajournal
000904022 980__ $$aVDB
000904022 980__ $$aUNRESTRICTED
000904022 980__ $$aI:(DE-Juel1)IEK-2-20101013
000904022 981__ $$aI:(DE-Juel1)IMD-1-20101013