001     904025
005     20240709094344.0
024 7 _ |a 10.1016/j.triboint.2021.107168
|2 doi
024 7 _ |a 0301-679X
|2 ISSN
024 7 _ |a 1879-2464
|2 ISSN
024 7 _ |a WOS:000687308600002
|2 WOS
037 _ _ |a FZJ-2021-05595
082 _ _ |a 660
100 1 _ |a Tsybenko, Hanna
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Scratch hardness at a small scale: Experimental methods and correlation to nanoindentation hardness
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714587229_11807
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nanoindentation and scratch experiments probe the hardness by leaving a permanent imprint on the material’s surface. The scratch hardness, however, is less used due to its unclear relation to the nanoindentation hardness and discrepancies in the evaluation methods. We investigate which scratch hardness evaluation methods lead to consistent results and for which materials and load-ranges the contact area can be estimated by the Hertz solution or by the nanoindentation hardness. Finally, we address the relation of nanoindentation and scratch hardness. Secondary influences on the scratch hardness (tip size, scratch depth and elliptical shape) are addressed. To evaluate the general applicability of the findings, we study 5 materials with significantly different deformation behavior: aluminum, copper, soda-lime glass, cementite, and silicon.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Farzam, Farnaz
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dehm, Gerhard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brinckmann, Steffen
|0 P:(DE-Juel1)164854
|b 3
|u fzj
773 _ _ |a 10.1016/j.triboint.2021.107168
|g Vol. 163, p. 107168 -
|0 PERI:(DE-600)1501092-2
|p 107168 -
|t Tribology international
|v 163
|y 2021
|x 0301-679X
909 C O |o oai:juser.fz-juelich.de:904025
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164854
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRIBOL INT : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21