000904027 001__ 904027
000904027 005__ 20240709094344.0
000904027 0247_ $$2doi$$a10.1016/j.jece.2021.105939
000904027 0247_ $$2ISSN$$a2213-2929
000904027 0247_ $$2ISSN$$a2213-3437
000904027 0247_ $$2WOS$$aWOS:000702522000006
000904027 037__ $$aFZJ-2021-05597
000904027 082__ $$a624
000904027 1001_ $$0P:(DE-Juel1)195755$$aYing, Ziwen$$b0
000904027 245__ $$aSeparation and recovery vanadium (V) and chromium (Ⅵ) using amide extractants based on the steric hindrance effect
000904027 260__ $$aAmsterdam ˜[u.a.]œ$$bElsevier$$c2021
000904027 3367_ $$2DRIVER$$aarticle
000904027 3367_ $$2DataCite$$aOutput Types/Journal article
000904027 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714582915_354
000904027 3367_ $$2BibTeX$$aARTICLE
000904027 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904027 3367_ $$00$$2EndNote$$aJournal Article
000904027 520__ $$aAs all existed in the form of anion, the separation of vanadium (V) and chromium (Ⅵ) in weak acid solution was a difficult issue. The study developed an efficient way to achieve the separation of V(V) and Cr(Ⅵ) based on the steric hindrance effect of amide extractants. The effects of different parameters on extraction were studied to explore the optimum conditions. The recoveries of vanadium and chromium were above 97.0% and 99.8%, respectively. The extraction of vanadium with amide was an exothermic reaction. The purity of V2O5 obtained was 99.97%. The V(V) complex of amide was confirmed to be R2H6V10O28. The extraction mechanism was studied with ESI-MS and FT-IR in depth. The extraction of V(V) with amide followed ion association with hydrogen bonding. A promising way was provided to separate vanadium (V) and chromium (Ⅵ) in leaching solution with amide under weak acid condition.
000904027 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000904027 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904027 7001_ $$0P:(DE-HGF)0$$aChen, Minghui$$b1
000904027 7001_ $$0P:(DE-Juel1)145147$$aWu, Guixuan$$b2
000904027 7001_ $$0P:(DE-HGF)0$$aLi, Jie$$b3
000904027 7001_ $$0P:(DE-Juel1)168508$$aLiu, Jilin$$b4
000904027 7001_ $$0P:(DE-HGF)0$$aWei, Qifeng$$b5
000904027 7001_ $$0P:(DE-HGF)0$$aRen, Xiulian$$b6$$eCorresponding author
000904027 773__ $$0PERI:(DE-600)2710047-9$$a10.1016/j.jece.2021.105939$$gVol. 9, no. 5, p. 105939 -$$n5$$p105939 -$$tJournal of environmental chemical engineering$$v9$$x2213-2929$$y2021
000904027 909CO $$ooai:juser.fz-juelich.de:904027$$pVDB
000904027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145147$$aForschungszentrum Jülich$$b2$$kFZJ
000904027 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000904027 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904027 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000904027 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904027 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904027 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000904027 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904027 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904027 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ENVIRON CHEM ENG : 2019$$d2021-01-27
000904027 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904027 920__ $$lyes
000904027 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000904027 980__ $$ajournal
000904027 980__ $$aVDB
000904027 980__ $$aI:(DE-Juel1)IEK-2-20101013
000904027 980__ $$aUNRESTRICTED
000904027 981__ $$aI:(DE-Juel1)IMD-1-20101013