001     904027
005     20240709094344.0
024 7 _ |a 10.1016/j.jece.2021.105939
|2 doi
024 7 _ |a 2213-2929
|2 ISSN
024 7 _ |a 2213-3437
|2 ISSN
024 7 _ |a WOS:000702522000006
|2 WOS
037 _ _ |a FZJ-2021-05597
082 _ _ |a 624
100 1 _ |a Ying, Ziwen
|0 P:(DE-Juel1)195755
|b 0
245 _ _ |a Separation and recovery vanadium (V) and chromium (Ⅵ) using amide extractants based on the steric hindrance effect
260 _ _ |a Amsterdam ˜[u.a.]œ
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714582915_354
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As all existed in the form of anion, the separation of vanadium (V) and chromium (Ⅵ) in weak acid solution was a difficult issue. The study developed an efficient way to achieve the separation of V(V) and Cr(Ⅵ) based on the steric hindrance effect of amide extractants. The effects of different parameters on extraction were studied to explore the optimum conditions. The recoveries of vanadium and chromium were above 97.0% and 99.8%, respectively. The extraction of vanadium with amide was an exothermic reaction. The purity of V2O5 obtained was 99.97%. The V(V) complex of amide was confirmed to be R2H6V10O28. The extraction mechanism was studied with ESI-MS and FT-IR in depth. The extraction of V(V) with amide followed ion association with hydrogen bonding. A promising way was provided to separate vanadium (V) and chromium (Ⅵ) in leaching solution with amide under weak acid condition.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chen, Minghui
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wu, Guixuan
|0 P:(DE-Juel1)145147
|b 2
700 1 _ |a Li, Jie
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Jilin
|0 P:(DE-Juel1)168508
|b 4
700 1 _ |a Wei, Qifeng
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ren, Xiulian
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.jece.2021.105939
|g Vol. 9, no. 5, p. 105939 -
|0 PERI:(DE-600)2710047-9
|n 5
|p 105939 -
|t Journal of environmental chemical engineering
|v 9
|y 2021
|x 2213-2929
909 C O |o oai:juser.fz-juelich.de:904027
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145147
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ENVIRON CHEM ENG : 2019
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21