001     904034
005     20240711113815.0
024 7 _ |a 10.1016/j.nme.2020.100885
|2 doi
024 7 _ |a 2128/29731
|2 Handle
024 7 _ |a WOS:000628782500020
|2 WOS
037 _ _ |a FZJ-2021-05604
082 _ _ |a 624
100 1 _ |a Bisson, R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Deuterium and helium outgassing following plasma discharges in WEST: Delayed D outgassing during D-to-He changeover experiments studied with threshold ionization mass spectrometry
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641196407_7203
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Threshold ionization mass spectrometry (TIMS) is one of two methods envisioned in ITER to quantify the helium (He) fusion product in the exhaust pumping lines during plasma discharges. We present the first demonstration of another potential application of TIMS in a tokamak environment, namely, the analysis of deuterium (D) and He outgassing following a plasma discharge i.e. during the post-discharge. This method has been tested with sub-second temporal resolution in WEST during its first He plasma discharges in the so-called He changeover experimental campaign. The calibration method of TIMS using a D plasma discharge is presented while the uncertainties related to TIMS during rapid pressure variations, i.e. upon plasma breakdown and plasma termination, are discussed. The first results obtained with TIMS during consecutive D and He plasma discharges in the full tungsten (W) tokamak WEST are reported. It is found that the time evolutions for He and D outgassing in the post-discharge are markedly different. On one hand, He outgassing is instantaneous and decays within 60 s until the He signal gets below detection level. On the other hand, D outgassing can reach a maximum up to several tens of seconds after the termination of the plasma and this outgassing can last for about 10 min. These striking differences should be related to different retention and outgassing from WEST plasma facing components, presently constituted of actively-cooled ITER-like W units and inertially cooled W-coated graphite. Potential mechanisms at the origin of the different outgassing behavior for D and He in W plasma facing components are discussed in light of a systematic analysis of the He and D gas balance and a macroscopic rate equation modeling of the D outgassing from the divertor strike points.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hodille, E. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gaspar, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Douai, D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wauters, T.
|0 P:(DE-Juel1)145890
|b 4
700 1 _ |a Gallo, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gunn, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hakola, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Loarer, T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Nouailletas, R.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Morales, J.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Pégourié, B.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Reux, C.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Sabot, R.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Tsitrone, E.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Vartanian, S.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Wang, E.
|0 P:(DE-Juel1)168296
|b 16
|e Corresponding author
|u fzj
700 1 _ |a Fedorczak, N.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 18
|u fzj
773 _ _ |a 10.1016/j.nme.2020.100885
|g Vol. 26, p. 100885 -
|0 PERI:(DE-600)2808888-8
|p 100885 -
|t Nuclear materials and energy
|v 26
|y 2021
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/904034/files/1-s2.0-S2352179120301484-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904034
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)168296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)129976
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-09-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21