000904038 001__ 904038
000904038 005__ 20240711113816.0
000904038 0247_ $$2doi$$a10.1016/j.jallcom.2021.160159
000904038 0247_ $$2ISSN$$a0925-8388
000904038 0247_ $$2ISSN$$a1873-4669
000904038 0247_ $$2WOS$$aWOS:000660355700005
000904038 037__ $$aFZJ-2021-05608
000904038 082__ $$a540
000904038 1001_ $$0P:(DE-HGF)0$$aChen, Jinmei$$b0
000904038 245__ $$aMicrostructures and mechanical properties of nano-C and in situ Al2O3 reinforced aluminium matrix composites processed by equal-channel angular pressing
000904038 260__ $$aLausanne$$bElsevier$$c2021
000904038 3367_ $$2DRIVER$$aarticle
000904038 3367_ $$2DataCite$$aOutput Types/Journal article
000904038 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642845565_7299
000904038 3367_ $$2BibTeX$$aARTICLE
000904038 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904038 3367_ $$00$$2EndNote$$aJournal Article
000904038 500__ $$akein Zugriff auf Postprint
000904038 520__ $$aIn this study, the powder metallurgy method was used to prepare nano-C and in situ Al2O3 hybrid reinforced Al matrix composites, the grain size was refined, and the dispersion of reinforcements was improved by equal-channel angular pressing (ECAP). Twin Si and slip steps were present in the composites reinforced by 0.75% carbon nanotubes (CNTs), 0.25% graphene nanoplatelets (GNPs), and Al2O3 by three ECAP passes. The interface between the CNTs and the matrix was closely bonded. The γ-Al2O3 particles and fibres were generated by an in situ method, and the nucleation and interfacial orientation of Al2O3 were discussed. With the increase in ECAP passes, the electrical and mechanical properties of the composites were improved. The electrical resistivity of the composites reinforced with 0.5% GNPs after three ECAP passes showed the lowest value of 3.64 × 10−8 Ωm. The maximum hardness of the composites reinforced with 1.0% CNTs after three ECAP passes was 321.9 HV. The compressive strengths of the composites improved. The strengthening mechanism of the ECAP-treated Al matrix composites was summarised as dislocation strengthening, dispersion strengthening, grain boundary strengthening, and load transfer.
000904038 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904038 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904038 7001_ $$00000-0002-6703-9116$$aJiang, Xiaosong$$b1
000904038 7001_ $$0P:(DE-HGF)0$$aLyu, Lan$$b2
000904038 7001_ $$0P:(DE-HGF)0$$aLi, Yanjun$$b3
000904038 7001_ $$0P:(DE-HGF)0$$aChristian, Pål$$b4
000904038 7001_ $$0P:(DE-HGF)0$$aSun, Hongliang$$b5
000904038 7001_ $$0P:(DE-Juel1)186824$$aShu, Rui$$b6$$eCorresponding author$$ufzj
000904038 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2021.160159$$gVol. 876, p. 160159 -$$p160159 -$$tJournal of alloys and compounds$$v876$$x0925-8388$$y2021
000904038 8564_ $$uhttps://juser.fz-juelich.de/record/904038/files/Microstructures%20and%20mechanical%20properties%20of%20nano-C%20and%20in%20situ%20Al2O3%20reinforced%20aluminium%20matrix%20composites%20processed%20by%20equal-channel%20angular%20pressing-1.pdf$$yRestricted
000904038 909CO $$ooai:juser.fz-juelich.de:904038$$pVDB
000904038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186824$$aForschungszentrum Jülich$$b6$$kFZJ
000904038 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904038 9141_ $$y2021
000904038 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2019$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000904038 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000904038 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904038 980__ $$ajournal
000904038 980__ $$aVDB
000904038 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904038 980__ $$aUNRESTRICTED
000904038 981__ $$aI:(DE-Juel1)IFN-1-20101013