000904039 001__ 904039
000904039 005__ 20240711113816.0
000904039 0247_ $$2doi$$a10.1515/ntrev-2021-0071
000904039 0247_ $$2ISSN$$a2191-9089
000904039 0247_ $$2ISSN$$a2191-9097
000904039 0247_ $$2Handle$$a2128/29759
000904039 0247_ $$2WOS$$aWOS:000711982900002
000904039 037__ $$aFZJ-2021-05609
000904039 082__ $$a660
000904039 1001_ $$0P:(DE-HGF)0$$aChen, Jinmei$$b0
000904039 245__ $$aPhase transformation and strengthening mechanisms of nanostructured high-entropy alloys
000904039 260__ $$aBoston, Mass.$$b˜Deœ Gruyter$$c2021
000904039 3367_ $$2DRIVER$$aarticle
000904039 3367_ $$2DataCite$$aOutput Types/Journal article
000904039 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641211253_4795
000904039 3367_ $$2BibTeX$$aARTICLE
000904039 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904039 3367_ $$00$$2EndNote$$aJournal Article
000904039 520__ $$aHigh-entropy alloys (HEAs) have become a research focus because of their easy access to nanostructures and the characteristics of high strength, hardness, wear resistance, and oxidation resistance, and have been applied in aerospace lightweight materials, ultrahigh temperature materials, high-performance materials, and biomimetic materials. At present, the study of HEAs mainly focuses on the microstructure and mechanical properties. HEAs of Mo, Ti, V, Nb, Hf, Ta, Cr, and W series have high strength, while HEAs of Fe, Co, Ni, Cr, Cu, and Mn series have good toughness. However, the emergence of medium-entropy alloys, metastable HEAs, dual-phase HEAs, and multiphase HEAs increased the complexity of the HEA system, and the phase transition mechanism and strengthening and toughening mechanisms were not fully established. In this article, the preparation, phase formation, phase transformation as well as strengthening and toughening mechanisms of the HEAs are reviewed. The inductive effects of alloying elements, temperature, magnetism, and pressure on the phase transformation were systematically analyzed. The strengthening mechanisms of HEAs are discussed, which provides a reference for the design and performance optimization of HEAs.
000904039 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904039 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904039 7001_ $$0P:(DE-HGF)0$$aJiang, Xiaosong$$b1
000904039 7001_ $$0P:(DE-HGF)0$$aSun, Hongliang$$b2
000904039 7001_ $$0P:(DE-HGF)0$$aShao, Zhenyi$$b3
000904039 7001_ $$0P:(DE-HGF)0$$aFang, Yongjian$$b4
000904039 7001_ $$0P:(DE-Juel1)186824$$aShu, Rui$$b5$$eCorresponding author$$ufzj
000904039 773__ $$0PERI:(DE-600)2646548-6$$a10.1515/ntrev-2021-0071$$gVol. 10, no. 1, p. 1116 - 1139$$n1$$p1116 - 1139$$tNanotechnology reviews$$v10$$x2191-9089$$y2021
000904039 8564_ $$uhttps://juser.fz-juelich.de/record/904039/files/10.1515_ntrev-2021-0071.pdf$$yOpenAccess
000904039 909CO $$ooai:juser.fz-juelich.de:904039$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186824$$aForschungszentrum Jülich$$b5$$kFZJ
000904039 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904039 9141_ $$y2021
000904039 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000904039 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904039 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904039 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOL REV : 2019$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000904039 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000904039 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000904039 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904039 9801_ $$aFullTexts
000904039 980__ $$ajournal
000904039 980__ $$aVDB
000904039 980__ $$aUNRESTRICTED
000904039 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904039 981__ $$aI:(DE-Juel1)IFN-1-20101013