001     904039
005     20240711113816.0
024 7 _ |a 10.1515/ntrev-2021-0071
|2 doi
024 7 _ |a 2191-9089
|2 ISSN
024 7 _ |a 2191-9097
|2 ISSN
024 7 _ |a 2128/29759
|2 Handle
024 7 _ |a WOS:000711982900002
|2 WOS
037 _ _ |a FZJ-2021-05609
082 _ _ |a 660
100 1 _ |a Chen, Jinmei
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Phase transformation and strengthening mechanisms of nanostructured high-entropy alloys
260 _ _ |a Boston, Mass.
|c 2021
|b ˜Deœ Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641211253_4795
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-entropy alloys (HEAs) have become a research focus because of their easy access to nanostructures and the characteristics of high strength, hardness, wear resistance, and oxidation resistance, and have been applied in aerospace lightweight materials, ultrahigh temperature materials, high-performance materials, and biomimetic materials. At present, the study of HEAs mainly focuses on the microstructure and mechanical properties. HEAs of Mo, Ti, V, Nb, Hf, Ta, Cr, and W series have high strength, while HEAs of Fe, Co, Ni, Cr, Cu, and Mn series have good toughness. However, the emergence of medium-entropy alloys, metastable HEAs, dual-phase HEAs, and multiphase HEAs increased the complexity of the HEA system, and the phase transition mechanism and strengthening and toughening mechanisms were not fully established. In this article, the preparation, phase formation, phase transformation as well as strengthening and toughening mechanisms of the HEAs are reviewed. The inductive effects of alloying elements, temperature, magnetism, and pressure on the phase transformation were systematically analyzed. The strengthening mechanisms of HEAs are discussed, which provides a reference for the design and performance optimization of HEAs.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jiang, Xiaosong
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sun, Hongliang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Shao, Zhenyi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fang, Yongjian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shu, Rui
|0 P:(DE-Juel1)186824
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1515/ntrev-2021-0071
|g Vol. 10, no. 1, p. 1116 - 1139
|0 PERI:(DE-600)2646548-6
|n 1
|p 1116 - 1139
|t Nanotechnology reviews
|v 10
|y 2021
|x 2191-9089
856 4 _ |u https://juser.fz-juelich.de/record/904039/files/10.1515_ntrev-2021-0071.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904039
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)186824
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOTECHNOL REV : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21