000904040 001__ 904040
000904040 005__ 20240711113816.0
000904040 0247_ $$2doi$$a10.1088/1741-4326/abe697
000904040 0247_ $$2ISSN$$a0029-5515
000904040 0247_ $$2ISSN$$a1741-4326
000904040 0247_ $$2altmetric$$aaltmetric:102577566
000904040 0247_ $$2WOS$$aWOS:000631362200001
000904040 037__ $$aFZJ-2021-05610
000904040 082__ $$a620
000904040 1001_ $$0P:(DE-Juel1)159191$$aChen, X. H.$$b0
000904040 245__ $$aThe impact of ELM mitigation on tungsten source in the EAST divertor
000904040 260__ $$aVienna$$bIAEA$$c2021
000904040 3367_ $$2DRIVER$$aarticle
000904040 3367_ $$2DataCite$$aOutput Types/Journal article
000904040 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1659513524_4520
000904040 3367_ $$2BibTeX$$aARTICLE
000904040 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904040 3367_ $$00$$2EndNote$$aJournal Article
000904040 500__ $$akein Zugriff auf Postprint
000904040 520__ $$aDivertor tungsten (W) erosion source during edge localized mode (ELM) bursts in EAST is investigated based on optical emission spectroscopy on atomic neutral tungsten line emission at 400.9 nm. Both temporal evolution and total source strength are analyzed and compared in three different ELM mitigation schemes including natural ELMs, resonant magnetic perturbations (RMP) and 2.45 GHz lower hybrid wave (LHW). The mitigation of W source caused by single ELM impact at the divertor target is mainly attributed to the reduction of the W source production in the ELM decay phase. However, with the increase of ELM frequency, the time-averaged intra-ELM W source during an ELM cycle rises and dominates the evolution of the total W source with increasing fraction, which exhibits strong correlation with the core W level in the RMP scheme. In the natural ELM scheme, the pedestal electron temperature is found not only to control the effective W sputtering yield at target during ELMs, thus influencing the intra-ELM W source, but also to be related to the delay time between the divertor ELM WI emission and the core extreme ultraviolet bolometer (XUV) signal which can scale with the parallel ion transit time. Furthermore, the delay time is found to have more consistent dependence on the pedestal plasma collisionality. The rise time of intra-ELM WI emission increases when RMP or LHW is applied, revealing a different ELM mitigation mechanism in comparison with the natural ELM scheme. The temporal profiles of the intra-ELM WI emission in different ELM mitigation schemes are compared and the potential mechanism is discussed. Besides, the ELM mitigation effects with RMP are found to be asymmetric at the outer and inner divertor targets, which is characterized by the different variations of the intra-ELM W source strength and the rise time of WI emission with the ramp-up of RMP coil current. Divertor partial detachment is achieved simultaneously with strong ELM mitigation under a suitable RMP phase difference without additional gas puff.
000904040 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904040 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904040 7001_ $$0P:(DE-HGF)0$$aDing, F.$$b1
000904040 7001_ $$0P:(DE-HGF)0$$aWang, L.$$b2
000904040 7001_ $$0P:(DE-HGF)0$$aSun, Y. W.$$b3
000904040 7001_ $$0P:(DE-Juel1)184709$$aDing, R.$$b4
000904040 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b5$$eCorresponding author
000904040 7001_ $$0P:(DE-HGF)0$$aZang, Q.$$b6
000904040 7001_ $$0P:(DE-HGF)0$$aWang, Y. M.$$b7
000904040 7001_ $$0P:(DE-Juel1)169946$$aDuan, Y. M.$$b8
000904040 7001_ $$0P:(DE-HGF)0$$aZhang, L.$$b9
000904040 7001_ $$0P:(DE-Juel1)187004$$aHu, Z. H.$$b10
000904040 7001_ $$0P:(DE-HGF)0$$aZhang, Qian$$b11
000904040 7001_ $$0P:(DE-HGF)0$$aYe, D. W.$$b12
000904040 7001_ $$0P:(DE-Juel1)190640$$aLuo, Y.$$b13
000904040 7001_ $$00000-0002-8633-5383$$aMeng, L. Y.$$b14
000904040 7001_ $$0P:(DE-Juel1)188320$$aLiu, Jianwen$$b15$$ufzj
000904040 7001_ $$0P:(DE-Juel1)174587$$aYang, Z. S.$$b16
000904040 7001_ $$0P:(DE-HGF)0$$aXu, G. S.$$b17
000904040 7001_ $$0P:(DE-Juel1)130088$$aLiang, Y. F.$$b18
000904040 7001_ $$0P:(DE-HGF)0$$aLuo, G.-N.$$b19
000904040 7001_ $$0P:(DE-Juel1)164184$$aDing, H. B.$$b20
000904040 7001_ $$0P:(DE-Juel1)156526$$aHu, J. S.$$b21
000904040 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/abe697$$gVol. 61, no. 4, p. 046046 -$$n4$$p046046 -$$tNuclear fusion$$v61$$x0029-5515$$y2021
000904040 8564_ $$uhttps://juser.fz-juelich.de/record/904040/files/Chen_2021_Nucl._Fusion_61_046046.pdf$$yRestricted
000904040 909CO $$ooai:juser.fz-juelich.de:904040$$pVDB
000904040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b5$$kFZJ
000904040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b8$$kFZJ
000904040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187004$$aForschungszentrum Jülich$$b10$$kFZJ
000904040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190640$$aForschungszentrum Jülich$$b13$$kFZJ
000904040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188320$$aForschungszentrum Jülich$$b15$$kFZJ
000904040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b18$$kFZJ
000904040 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904040 9141_ $$y2021
000904040 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904040 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000904040 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904040 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904040 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904040 980__ $$ajournal
000904040 980__ $$aVDB
000904040 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904040 980__ $$aUNRESTRICTED
000904040 981__ $$aI:(DE-Juel1)IFN-1-20101013