000904041 001__ 904041
000904041 005__ 20240711113817.0
000904041 0247_ $$2doi$$a10.1016/j.nme.2021.100962
000904041 0247_ $$2Handle$$a2128/29733
000904041 0247_ $$2WOS$$aWOS:000663579600004
000904041 037__ $$aFZJ-2021-05611
000904041 082__ $$a624
000904041 1001_ $$0P:(DE-HGF)0$$aChmielewski, P.$$b0$$eCorresponding author
000904041 245__ $$aTECXY simulations of Ne seeding in JET high power scenarios
000904041 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904041 3367_ $$2DRIVER$$aarticle
000904041 3367_ $$2DataCite$$aOutput Types/Journal article
000904041 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648536512_23547
000904041 3367_ $$2BibTeX$$aARTICLE
000904041 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904041 3367_ $$00$$2EndNote$$aJournal Article
000904041 520__ $$aPreparation of D-T experiments on JET device raises a question about the mitigation of assumed high power entering the SOL. JET DT scenarios aim to achieve good plasma confinement and the heat loads reduction to the divertor at the same time. Therefore, the divertor corner magnetic field geometry, strike point swiping and impurity seeding are considered to reduce expected high heat fluxes to the divertor plates. The aim of the paper is to analyse the influence of the neon impurity seeding on the plasma transport and its efficiency of the power mitigation in the JET tokamak as well as to perform validation of applied edge plasma model. In this contribution numerical simulations have been performed for two high power (34 MW), neon seeded DD JET discharges in the H-mode with different upstream densities and the same corner divertor configuration prepared as possible candidate for JET DT scenarios. The edge plasma transport have been described by two-dimensional multifluid TECXY code based on Braginskii plasma transport equations with assumed classical parallel transport of the plasma and anomalous perpendicular transport defined by ad hoc heat and particle transport coefficients. TECXY results show impact of the neon seeding on the reduction of the power flowing to the divertor. Scan with the neon concentration carried out for four different upstream densities allow us to determine optimal plasma conditions with the lowest target plate temperature and the lowest effective charge. Performed studies with use of the TECXY code and they comparison to experimental results give the opportunity to perform validation of applied TECXY edge plasma model and show the optimal range of plasma parameters like the upstream density and neon concentration, for which the radiation power in the SOL is the highest.
000904041 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904041 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904041 7001_ $$0P:(DE-HGF)0$$aZagórski, R.$$b1
000904041 7001_ $$0P:(DE-Juel1)130165$$aTelesca, G.$$b2
000904041 7001_ $$0P:(DE-HGF)0$$aBrix, M.$$b3
000904041 7001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b4
000904041 7001_ $$0P:(DE-HGF)0$$aIvanova-Stanik, I.$$b5
000904041 7001_ $$0P:(DE-HGF)0$$aKowalska-Strzeciwilk, E.$$b6
000904041 7001_ $$0P:(DE-HGF)0$$aPereira, T.$$b7
000904041 7001_ $$0P:(DE-HGF)0$$aRéfy, D. I.$$b8
000904041 7001_ $$0P:(DE-HGF)0$$aTamain, P.$$b9
000904041 7001_ $$0P:(DE-HGF)0$$aVécsei, M.$$b10
000904041 7001_ $$aVianello, N.$$b11
000904041 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2021.100962$$gVol. 27, p. 100962 -$$p100962 -$$tNuclear materials and energy$$v27$$x2352-1791$$y2021
000904041 8564_ $$uhttps://juser.fz-juelich.de/record/904041/files/1-s2.0-S2352179121000491-main.pdf$$yOpenAccess
000904041 909CO $$ooai:juser.fz-juelich.de:904041$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130165$$aForschungszentrum Jülich$$b2$$kFZJ
000904041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b4$$kFZJ
000904041 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904041 9141_ $$y2021
000904041 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000904041 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904041 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904041 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000904041 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000904041 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904041 9801_ $$aFullTexts
000904041 980__ $$ajournal
000904041 980__ $$aVDB
000904041 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904041 980__ $$aUNRESTRICTED
000904041 981__ $$aI:(DE-Juel1)IFN-1-20101013